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• Background about Software Supply Chain and relevance to Java

• Demo of Log4shell exploit

• Novel Tool: SBOM.EXE: Countering Dynamic Code Injection based on Software Bill of 
Materials in Java

• Demo of Log4shell mitigation

• Evaluation

• Conclusion
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What is Software Supply Chain?
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What is Software Supply Chain Attack?
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[1] Q. Wu et al. “On the Feasibility of Stealthily Introducing Vulnerabilities in Open-Source Software via Hypocrite Commits”, 2021
[2] S. Peisert et al. “Perspectives on the solarwinds incident,” IEEE Security Privacy, 2021
[3] P. Ladisa et al. Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain 
Offensive Research and Ecosystem Defenses, 2022
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How is Software Supply Chain Attack relevant in Java?
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Dynamic classloading could be exploited!!!

• Code can be downloaded at runtime.

• Code can be generated at runtime. [5]

[5] Oracle, ClassLoader (Java SE 21 & JDK 21) (oracle.com), 2023, 
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/lang/ClassLoader.html#builtinLoaders

steal steal 1010101010101
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How is Software Supply Chain Attack relevant in Java?
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Why is Log4Shell a Software Supply Chain attack?
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[6] dev.deps, ‘Dependents | org.apache.logging.log4j:log4j-core | Maven | Open Source Insights’. 
https://deps.dev/maven/org.apache.logging.log4j%3Alog4j-core/2.14.1/dependents
[7] Sonatype, 2024 State of the Software Supply Chain (2024)
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Demo: Exploit
CVE-2021-44228 (Log4Shell) 
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Source: https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228 

https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228


Demo Steps (for replication later) for exploit

1. Make sure Java 17 (or earlier) is on PATH.

2. Inspect code in rq2/log4shell-2021-44228/src/main/java and  run ./normal-usage.sh. 
This should log “this is an error”.

3. Now startup the LDAP server by going to root of the project and run java -jar 
target/RogueJndi-1.1.jar --command "gedit /etc/passwd".
1. This will inject the command argument in the bytecode that will be hosted on LDAP server.

4. Next, go back to the same directory where “normal-usage” was run. Run 
./malicious-usage.sh. This will execute the malicious bytecode.

Source: https://github.com/chains-project/exploits-for-sbom.exe/

Aman Sharma | amansha@kth.se
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Log4Shell – a software supply chain attack at runtime

Aman Sharma | amansha@kth.se 1005-02-2025



Problem: Java can trigger 
download or generation of 
unknown code.
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Solution: Create an 
allowlist of Java 
classes and only 
load those classes
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Step 1: Indexing 

Problem: how to index built-in classes?

Solution: let’s scan all classes using classgraph [20].

Problem: what about source code and dependencies?

Solution: finally, Software Bill of Materials, has one (now implemented) use case.

Problem: and code from remote source and runtime generated code?

Solution: if we execute the code, we can capture them. Let’s just run tests.
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[20] L. Hutchison, Classgraph, GitHub.com, 2024 
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Part 1 done ✅
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Step 2: Enforcement

Problem: Java class is simply loaded without any integrity.

Solution: We intercept loading and then verify it.
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Test run

Okay, we seem to be done. Let’s see what happened initially.

Problem 1: There seems to be false-positives. This class

was in the allowlist.

Problem 2: There seems to be non-determinism in

runtime generated code.

Solution: Let’s ignore this non-deterministic features.
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Bytecode Canonicalization
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• Classnames could 
change across different 
executions.

• The type references 
change.

• The order of method is 
not fixed.
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Novel Concepts Summarised

Problem: what to index?

Solution: 3 indexers for built-in classes source code, dependencies, and dynamic code.

Problem: how to load class with verification

Solution: SBOM Runtime Watchdog is a novel tool to intercept Java classloading and verify 
integrity of each Java class.

Problem: non-determinism of Java bytecode.

Solution: Bytecode Canonincalization.

Problem: Windows users miss blue screen of death in Linux

Solution: 
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Demo: Mitigation
CVE-2021-44228 (Log4Shell) 
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Source: https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228 

https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228


Demo Steps (for replication later) for mitigation

1. To run with SBOM.exe protection, we follow two steps:
1. Run ./generate-index.sh. This outputs the index.jsonl which is the BOMI.
2. Run ./sbom.exe.sh. This would terminate the program just before the malicious class is 

initialized.

Aman Sharma | amansha@kth.se
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Evaluation

1. We developed PoC for 3 exploits and mitigated all 3 of them proving that our approach is 
efficient.
a. log4shell [8]
b. authentication with H2 database server [9]
c. apache commons configuration [10]

2. We integrated our system into 3 real-world applications proving that our approach can 
mitigate dynamic classloading attacks on them.
a. PDFBox [11]
b. ttorrent [12]
c. GraphHopper [13]
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[8] ‘NVD - CVE-2021-44228’. https://nvd.nist.gov/vuln/detail/CVE-2021-44228
[9] ‘NVD - CVE-2021-42392’. https://nvd.nist.gov/vuln/detail/CVE-2021-42392
[10] ‘NVD - CVE-2022-33980’. https://nvd.nist.gov/vuln/detail/CVE-2022-33980
[11] ‘Apache PDFBox | Command-Line Tools’. https://pdfbox.apache.org/2.0/commandline.html
[12] M. Petazzoni, mpetazzoni/ttorrent. https://github.com/mpetazzoni/ttorrent
[13] ‘GraphHopper Directions API with Route Optimization’. https://www.graphhopper.com/
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Takeaways

SBOM.exe can mitigate three high-profile 
CVEs based on code generation and 
downloading.

SBOM.exe proposes a strong bytecode 
canonincalization algorithm which eliminates 
non-determinism in dynamic classes.

SBOM.exe can work well in production 
environment as shown by three real world 
projects.
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4th workshop on Software Supply Chain
Full day of discussions about software supply chain on topics:

- code integrity
- reproducible builds
- dependency management
- and many more … (see agenda)

When: 25th April, 2025

Where: KTH, Stockholm, Sweden

Registration (free of charge): 
https://chains.proj.kth.se/software-supply-chain-workshop-4.html 
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Thank you!

Aman Sharma

amansha@kth.se

Project Link: 
https://github.com/chains-project/sbom.exe 

Whitepaper: SBOM.EXE: Countering 
Dynamic Code Injection based on Software 

Bill of Materials in Java

4th CHAINS
workshop

Rate my
talk!

https://www.jfokus.se/rate/2382https://chains.proj.kth.se/software-
supply-chain-workshop-4.html
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