
Securing Software Supply
Chain at Runtime

Whitepaper: SBOM.EXE: Countering Dynamic Code Injection based on
Software Bill of Materials in Java

Aman Sharma, Martin Wittlinger, Benoit Baudry, Martin Monperrus

05-02-2025 Aman Sharma | amansha@kth.se 1

• Background about Software Supply Chain and relevance to Java

• Demo of Log4shell exploit

• Novel Tool: SBOM.EXE: Countering Dynamic Code Injection based on Software Bill of
Materials in Java

• Demo of Log4shell mitigation

• Evaluation

• Conclusion

Outline

05-02-2025 Aman Sharma | amansha@kth.se 2

https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246

What is Software Supply Chain?

Aman Sharma | amansha@kth.se 3

Source

Build

Dependency

Registry

Software
package is
created

What developers write

What developers declare

Software
packaged
is stored

Software Reuse
DependencyDependency

Execute

Execute

Execute

05-02-2025

What is Software Supply Chain Attack?

Aman Sharma | amansha@kth.se 4

[1] Q. Wu et al. “On the Feasibility of Stealthily Introducing Vulnerabilities in Open-Source Software via Hypocrite Commits”, 2021
[2] S. Peisert et al. “Perspectives on the solarwinds incident,” IEEE Security Privacy, 2021
[3] P. Ladisa et al. Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses, 2022
[4] J. Cappos et al. “A look in the mirror: attacks on package managers,” in Proceedings of the 15th ACM conference on Computer and
communications security, 2008

Source

Build

Dependency

Registry

DependencyDependency

Execute

Execute

Execute

[1]

[3]

[2] [4]

RegistryBuild

Source

Malicious
Payload!

05-02-2025

How is Software Supply Chain Attack relevant in Java?

Aman Sharma | amansha@kth.se 5

Source

Dependency

// Qux.class
return
// Bar.class
ldc
// Foo.class
getstatic
// Baz.class
invokevirtual
// Quux.class

// Foo.class
getstatic
// Bar.class
ldc
// Baz.class
invokevirtual
// Qux.class
return
// Quux.class

10101010101010
11010101010101
01010110101010
10101010101101
01010010001010
10101010101010
10101010101010
11010101010110
01101

Loading Linking Initialization

Remote
Source

Runtime
Generation

Dynamic classloading could be exploited!!!

• Code can be downloaded at runtime.

• Code can be generated at runtime. [5]

[5] Oracle, ClassLoader (Java SE 21 & JDK 21) (oracle.com), 2023,
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/lang/ClassLoader.html#builtinLoaders

steal steal 1010101010101

05-02-2025

https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/lang/ClassLoader.html#builtinLoaders

How is Software Supply Chain Attack relevant in Java?

05-02-2025 Aman Sharma | amansha@kth.se 6

Source

Dependency

// Qux.class
return
// Bar.class
ldc
// Foo.class
getstatic
// Baz.class
invokevirtual
// Quux.class
steal

// Foo.class
getstatic
// Bar.class
Ldc
// Baz.class
invokevirtual
// Qux.class
return
// Quux.class
steal

10101010101010
11010101010101
01010110101010
10101010101101
01010010001010
10101010101010
10101010101010
11010101010110
01101
1010101010101

Loading Linking Initialization

Remote
Source

Runtime
Generation

Dynamic classloading could be exploited!!!

• Code can be downloaded at runtime.

• Code can be generated at runtime. [5]

[5] Oracle, ClassLoader (Java SE 21 & JDK 21) (oracle.com), 2023,
https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/lang/ClassLoader.html#builtinLoaders

https://docs.oracle.com/en%2Fjava%2Fjavase%2F21%2Fdocs%2Fapi%2F%2F/java.base/java/lang/ClassLoader.html#builtinLoaders

Why is Log4Shell a Software Supply Chain attack?

05-02-2025 Aman Sharma | amansha@kth.se 7

[6] dev.deps, ‘Dependents | org.apache.logging.log4j:log4j-core | Maven | Open Source Insights’.
https://deps.dev/maven/org.apache.logging.log4j%3Alog4j-core/2.14.1/dependents
[7] Sonatype, 2024 State of the Software Supply Chain (2024)

[6] [7]

Demo: Exploit
CVE-2021-44228 (Log4Shell)

05-02-2025 Aman Sharma | amansha@kth.se 8

Source: https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228

https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228

Demo Steps (for replication later) for exploit

1. Make sure Java 17 (or earlier) is on PATH.

2. Inspect code in rq2/log4shell-2021-44228/src/main/java and run ./normal-usage.sh.
This should log “this is an error”.

3. Now startup the LDAP server by going to root of the project and run java -jar
target/RogueJndi-1.1.jar --command "gedit /etc/passwd".
1. This will inject the command argument in the bytecode that will be hosted on LDAP server.

4. Next, go back to the same directory where “normal-usage” was run. Run
./malicious-usage.sh. This will execute the malicious bytecode.

Source: https://github.com/chains-project/exploits-for-sbom.exe/

Aman Sharma | amansha@kth.se

9

05-02-2025

https://github.com/chains-project/exploits-for-sbom.exe/

Log4Shell – a software supply chain attack at runtime

Aman Sharma | amansha@kth.se 1005-02-2025

Problem: Java can trigger
download or generation of
unknown code.

05-02-2025 Aman Sharma | amansha@kth.se 11

Solution: Create an
allowlist of Java
classes and only
load those classes

05-02-2025 Aman Sharma | amansha@kth.se 12

Step 1: Indexing

Problem: how to index built-in classes?

Solution: let’s scan all classes using classgraph [20].

Problem: what about source code and dependencies?

Solution: finally, Software Bill of Materials, has one (now implemented) use case.

Problem: and code from remote source and runtime generated code?

Solution: if we execute the code, we can capture them. Let’s just run tests.

Aman Sharma | amansha@kth.se 13

[20] L. Hutchison, Classgraph, GitHub.com, 2024

java.util.List
org.apache.log4j.Log
Jdk.proxy1.$Proxy10

abf4834
8349dce
facaded

Checksum
computation

// allowlist.bomi
A hash table of class name
and checksums.

Part 1 done ✅
05-02-2025

Step 2: Enforcement

Problem: Java class is simply loaded without any integrity.

Solution: We intercept loading and then verify it.

Aman Sharma | amansha@kth.se 14

Java
Application

Java Virtual
Machine

SBOM
Runtime

Watchdog

1) Load
this class.

Bill of Material Index
(Allowlist)

2) Is the
class there?

3) Yes

4) Can be
executed.

4) Terminate
and log
incident

Part 2 done ✅

05-02-2025

Test run

Okay, we seem to be done. Let’s see what happened initially.

Problem 1: There seems to be false-positives. This class

was in the allowlist.

Problem 2: There seems to be non-determinism in

runtime generated code.

Solution: Let’s ignore this non-deterministic features.

Aman Sharma | amansha@kth.se 1505-02-2025

Bytecode Canonicalization

Aman Sharma | amansha@kth.se 16

• Classnames could
change across different
executions.

• The type references
change.

• The order of method is
not fixed.

05-02-2025

Novel Concepts Summarised

Problem: what to index?

Solution: 3 indexers for built-in classes source code, dependencies, and dynamic code.

Problem: how to load class with verification

Solution: SBOM Runtime Watchdog is a novel tool to intercept Java classloading and verify
integrity of each Java class.

Problem: non-determinism of Java bytecode.

Solution: Bytecode Canonincalization.

Problem: Windows users miss blue screen of death in Linux

Solution:

Aman Sharma | amansha@kth.se 1705-02-2025

Demo: Mitigation
CVE-2021-44228 (Log4Shell)

05-02-2025 Aman Sharma | amansha@kth.se 18

Source: https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228

https://github.com/chains-project/exploits-for-sbom.exe/tree/main/rq2/log4shell-2021-44228

Demo Steps (for replication later) for mitigation

1. To run with SBOM.exe protection, we follow two steps:
1. Run ./generate-index.sh. This outputs the index.jsonl which is the BOMI.
2. Run ./sbom.exe.sh. This would terminate the program just before the malicious class is

initialized.

Aman Sharma | amansha@kth.se

19

05-02-2025

Evaluation

1. We developed PoC for 3 exploits and mitigated all 3 of them proving that our approach is
efficient.
a. log4shell [8]
b. authentication with H2 database server [9]
c. apache commons configuration [10]

2. We integrated our system into 3 real-world applications proving that our approach can
mitigate dynamic classloading attacks on them.
a. PDFBox [11]
b. ttorrent [12]
c. GraphHopper [13]

20

[8] ‘NVD - CVE-2021-44228’. https://nvd.nist.gov/vuln/detail/CVE-2021-44228
[9] ‘NVD - CVE-2021-42392’. https://nvd.nist.gov/vuln/detail/CVE-2021-42392
[10] ‘NVD - CVE-2022-33980’. https://nvd.nist.gov/vuln/detail/CVE-2022-33980
[11] ‘Apache PDFBox | Command-Line Tools’. https://pdfbox.apache.org/2.0/commandline.html
[12] M. Petazzoni, mpetazzoni/ttorrent. https://github.com/mpetazzoni/ttorrent
[13] ‘GraphHopper Directions API with Route Optimization’. https://www.graphhopper.com/

05-02-2025

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-42392
https://nvd.nist.gov/vuln/detail/CVE-2022-33980
https://pdfbox.apache.org/2.0/commandline.html
https://github.com/mpetazzoni/ttorrent
https://www.graphhopper.com/

Takeaways

SBOM.exe can mitigate three high-profile
CVEs based on code generation and
downloading.

SBOM.exe proposes a strong bytecode
canonincalization algorithm which eliminates
non-determinism in dynamic classes.

SBOM.exe can work well in production
environment as shown by three real world
projects.

2105-02-2025 Aman Sharma | amansha@kth.se

4th workshop on Software Supply Chain
Full day of discussions about software supply chain on topics:

- code integrity
- reproducible builds
- dependency management
- and many more … (see agenda)

When: 25th April, 2025

Where: KTH, Stockholm, Sweden

Registration (free of charge):
https://chains.proj.kth.se/software-supply-chain-workshop-4.html

2205-02-2025

https://chains.proj.kth.se/software-supply-chain-workshop-4.html

Aman Sharma | amansha@kth.se 23

Thank you!

Aman Sharma

amansha@kth.se

Project Link:
https://github.com/chains-project/sbom.exe

Whitepaper: SBOM.EXE: Countering
Dynamic Code Injection based on Software

Bill of Materials in Java

4th CHAINS
workshop

Rate my
talk!

https://www.jfokus.se/rate/2382https://chains.proj.kth.se/software-
supply-chain-workshop-4.html

05-02-2025

mailto:amansha@kth.se
https://github.com/chains-project/sbom.exe
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246
https://arxiv.org/abs/2407.00246

