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Authors
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Status
Release
Component
Discussion
Relates to
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

JEP 436: Virtual Threads (Second Preview)

Ron Pressler, Alan Bateman

Alan Bateman

Feature

SE

Completed

20

core-libs

loom dash dev at openjdk dot org
JEP 425: Virtual Threads (Preview)
Alex Buckley

Brian Goetz

2022/10/23 15:18

2023/01/18 21:51

8295817

Introduce virtual threads to the Java Platform. Virtual threads are lightweight
threads that dramatically reduce the effort of writing, maintaining, and observing
high-throughput concurrent applications. This is a preview AP
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Loom is a Work in Progress

David Delabassée oo |
@delabassee view)

Implementation of Virtual Threads (Preview) ¥4 “» 4
- Stats: 99468 lines in 1133 files changed: 91198 ins;
3598 del; 4672 mod %
#Javal9 #0penlDK #ProjectLoom

Traduire le Tweet

Don’t believe

openjdk/jdk

8284161:
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- Virtual Threads...
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104k lines changed +95870 -8270 mEE N maintaining, and observing

liew API.

Alan Bateman committed May 7,2022 -0~ 9583e36 )

9 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023




Loom is a Work in Progress
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JEP 437: Structured Concurrency (Second Incubator)

Authors
Owner

Type

Scope
Status
Release
Component
Discussion
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

Simplify multithreaded programming by introducing an API for structured
concurrency. Structured concurrency treats multiple tasks running in different
threads as a single unit of work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing observability. This is an

incubating API.

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Completed

20

core-libs

loom dash dev at openjdk dot org
Alex Buckley

Brian Goetz

2022/10/28 12:41
2023/01/13 17:18

8296037
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Loom is a Work in Progress
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JEP 429: Scoped Values (Incubator)

Authors Andrew Haley, Andrew Dinn
Owner Andrew Haley
Type Feature
Scope |DK
Status Integrated
Release 20
Component core-libs
Discussion loom dash dev at openjdk dot java dot net
Relates to 8286666: JEP 429: Implementation of Scoped Values (Incubator)
Reviewed by Alan Bateman, Alex Buckley
Endorsed by John Rose
Created 2021/03/04 11:03
Updated 2022/12/07 11:19
Issue 8263012

Summary

Introduce scoped values, which enable the sharing of immutable data within and
across threads. They are preferred to thread-local variables, especially when using

large numbers of virtual threads. This is an incubating API.
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Loom is a Work in Progress
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JEP 429: Scoped Values (Incubator)

Authors
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Status
Release
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Discussion
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Endorsed by
Created
Updated
Issue
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Andrew Haley, Andrew Dinn

Andrew Haley
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JDK
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It all Started with a Runnable...
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1995: Threads and Runnables

1995: Thread, Runnable

Runnable task = new Runnable() {

void run() {
System.out.println("I am running in thread " +

Thread.currentThread() .getName()); _
| Doug Lea

} Concurrent
}s Programming in Java
Second Edition

Thread thread = new Thread(task);

thread.start();
thread.join(); // blocks

2/7/2023
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1995: Threads and Runnables

1995: Thread, Runnable

Object key = new Object();

synchronized(key) {
System.out.println("Only one thread can execute me!");

¥

16 Copyright © 2021, Oracle and/or its affiliates 2/7/2023




2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

Callable<String> task = new Callable<String>() {

@Override
public String call() throws Exception ({ P L

oooooooooooooooooooooooooo

n . 1  anoDouc Lea

return "I am running in thread " +
Thread.currentThread() .getName();

s
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2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

ExecutorService service =
Executors.newFixedThreadPool (4);

Future<String> future = service.submit(task);

Wait lists inside!
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2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

String result = future.get(); // blocks

String result = future.get(10, TimeUnit.MICROSECONDS);

boolean cancelled = future.cancel(true);
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2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

Lock lock = new ReentrantLock();
lock.lock();

try {

System.out.println("Only one thread can execute me!");

} finally {
lock.unlock();

¥
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2004: Java Util Concurrent
2004: Java 5, java.util.concurrent

Plus many more concurrent classes:

- Lock, Semaphore, Barrier, CountDownlLatch
- BlockingQueue, ConcurrentMap

- CopyOnWriteArraylList




2011: Fork / Join

2011 — 2014 (Java 7, Java 8):
- Fork / Join, parallel Stream

Allows to compute elements in parallel

Two phases:

- fork = splits a task in two sub-tasks

- join = merge the result of two sub-tasks

Uses work stealing to spread the tasks among threads




2014: CompletionStage

2011 — 2014 (Java 7, Java 8):
- CompletionStage, CompletableFuture

Subtype of Future
Asynchronous programming model
Allows to trigger tasks on the outcome of other tasks

User can control which thread executes what task
Exceptions handling




One thing stays the same

Once a thread begins to process a task it cannot release it
Either the task completes with a result
Or is completes with an exception

It may be an InterruptedException
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2023?: Loom!

2022+ (prev. in Java 19) | v : @ .
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Why Do We Need Concurrency?
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Concurrency: Computations vs. 1/O
Concurrency may be used in two different contexts:
1) Processing in-memory data in parallel, using all the CPU cores

- Each thread uses 100% of your CPU cores
- Threads are mostly not blocking




Concurrency: Computations vs. 1/O
Concurrency may be used in two different contexts:
2) Handling numerous blocking requests / responses

HTTP Server — 1 request <=|=> 1 thread
DB Server — 1 transaction <=|=> 1 thread




Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

—> Preparing the request
Time scale: 10ns
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Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

—> Waiting for the response
Time scale: 10ms
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Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

Processing the response
Time scale: 10ns
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Concurrency for 1/0

Processing |/O data:

A Thread is idle 99.9999% of the time!

ns

ms

How many threads do you need to keep your CPU busy?

2/7/2023

ns




Concurrency for 1/0

A thread is not cheap!

- Thread startup time: ~1ms

- Thread memory consumption: 2MB of stack

- Context switching: ~100us (depends on the OS)

Having 1 million platform threads is not possible!




Solutions?

CompletionState / CompletableFuture
Asynchronous / Reactive programming
Async / Await (C# or Kotlin)

Mono / Multi (Spring)

Uni / Multi (Quarkus)




Solutions?

Breaking down a request handling into small stages
Then compose them into a pipeline

The code becomes:

- hard to read and write (callback hell)

- hard to debug (call stack?)

- hard to test

- hard to profile
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[.oom to the Rescue
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Virtual Thread!

// platform threads
var pthread =

System.out.println("platform

1)
pthread.start();

pthread.join();

new Thread(() -> {

+ Thread.currentThread());

37 Copyright © 2021, Oracle and/or its affiliates |
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Virtual Thread!

// virtual threads
var vthread = Thread.startVirtualThread(() -> {
System.out.println("virtual " + Thread.currentThread());

})s

vthread.join();

// platform threads
var pthread = Thread.ofPlLatform(() -> {
System.out.println("platform " + Thread.currentThread());

1)
pthread.join();
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Virtual Thread!

// platform threads
platform Thread[#14,Thread-0,5,main]

// virtual threads
virtual VirtualThread[#15]/runnable@ForkJoinPool-1-worker-1

A virtual thread runs on a carrier thread from a Fork-Join pool
(not the common fork join pool)

This pool implements a FIFO queue (instead of a LIFO one)
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Thread Polymorphic Builder

// platform threads
var pthread = Thread.ofPlatform()
.name("platform-", 0)
start(() -> {
System.out.println("platform

1)
pthread.join();

+ Thread.currentThread());

// virtual threads
var vthread = Thread.ofVirtual()
.name("virtual-", 9)
.start(() -> {
System.out.println("virtual " + Thread.currentThread());

1)

vthread. join();
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Copyright © 2021, Oracle a

How many virtual threads can | run?
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Running a Thread

Platform/OS thread (starts in ms)
- Creates a 2MB stack upfront
- System call to ask the OS to schedule the thread

Virtual thread (starts in ps)
- Grow and shrink the stack dynamically

- Use a specific fork-join pool of platform threads (carrier
threads)

- One platform thread per core
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How does it work under the hood?
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Continuation
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Where Does the Magic Come From?

@ChangesCurrentThread
private boolean yieldContinuation() {
boolean notifyJvmti = notifyJvmtiEvents;
// unmount
if (notifyJvmti) notifyJvmtiUnmountBegin(false);
unmount();

try {

return Continuation.yield(VTHREAD SCOPE);
} finally {

// re-mount
mount();

if (notifyJvmti) notifyJlvmtiMountEnd(false);
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Int
Continuation.yield() o ”a/Ap,

yield() copies the stack to the heap

sleep() ‘--§233£E£1§‘\‘\5\
>

start() ——

stack heap
Platform thread 1
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Int
Continuation.yield() o ”a/Ap,

yield() copies the stack to the heap

start() ——

stack heap
Platform thread 1

Copyright © 2021, Oracle and/or its affiliates 2/7/2023



Int
Continuation.run() er’7<9/,<|,o/

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

re—PUn() ==

€

start() ——

stack heap
Platform thread 1
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Int
Continuation.run() er’7<9/,<|,o/

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

é
start() —— —

stack stack heap
Platform thread 1 Platform thread 2
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jdk.internal.vm.Continuation

/
ey AP

var scope = new ContinuationScope("hello");
var continuation = new Continuation(scope, () -> {
System.out.println("C1");
Continuation.yield(scope);
System.out.println("C2");
Continuation.yield(scope);
System.out.println("C3");
})s
System.out.println("start™);
continuation.run();
System.out.println("came back");
continuation.run();
System.out.println("back again");
continuation.run();
System.out.println("back again again");

Execution:

start

C1

came back

C2

back again
C3

back again again

50
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There Are Cases Where It Does Not Work
Sometimes virtual threads are pinned to their carrier thread

Native code that does an upcall to Java may use an address on
stack

—> the stack frames can not be copied




Running a Virtual Thread

A Platform Thread Is a thin wrapper on an OS Thread
A Virtual Thread is not tied to a particular OS Thread

A Virtual Thread only consumes an OS Thread
when it performs calculations on the CPU
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Creating a virtual thread is cheap

Blocking a virtual thread is cheap

Pooling virtual threads is useless
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Loom is not Implemented « By the JVM »

Most of the code of the virtual threads scheduling is written in
Java in the JDK (jdk.internal.vm.Continuation)

Written in Cin the JVM:
- Copy of the stack frames back and forth
- GCs modified to find references in stack on heap




In the JDK

All blocking codes are changed to
- Check if current thread is a virtual thread

- Ifitis, instead of blocking:
- Register a handler that will be called when the OS is
ready (using NIO)
- Call Continuation.yield()

- When the handler is called, find a carrier thread and call
Continuation.start()
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There Are Cases Where It Does Not Work

Sometimes virtual threads are pinned to their carrier thread

Synchronized block are written in assembly and uses an address
on the stack

—> the stack frames can not be copied

Prefer ReentrantLock over synchronized()




Stealth Rewrite of the JDK for Loom

Java 13

- JEP 353 Reimplement the Legacy Socket API

Java 14

- JEP 373 Reimplement the Legacy Datagram Socket API
- JEP 374 Deprecate and Disable Biased Locking




Stealth Rewrite of the JDK for Loom

Java 18
- JEP 416 Reimplement Core Reflection with Method Handles

- JEP 418 (Internet-Address Resolution SPI) in JDK 18 defined a
service-provider interface for host name and address lookup.
This will allow third-party libraries to implement alternative
java.net.InetAddress resolvers that do not pin threads during
host lookup




Loom Idea: Under the Hood

The JDK creates as many virtual threads as the user want
- Mount a virtual thread to an available carrier thread when
starting

- If blocking, unmount the current virtual thread and mount
another virtual thread
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Structured Concurrency
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Why Do You Need Structured Concurrency?

Because thread dumps work well with several thousands of
threads, not millions of threads

Not to talk about what can happen in your IDE...

You need to structure these threads




Structured Task Scope

Welcome to Loom Scopes
- It's a pool of threads, that creates virtual threads on demand
- Once a task is done, the thread dies
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The Travel Agency Example

A travel agency sells travels. On the response page, it wants to
display:

- the quotation
- the weather forecast for the destination
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The Travel Agency Example

Quotation

Weather Forecast
Travel Page
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CompletableFuture Based Travel Agency

var quotationCF =

CompletableFuture.supplyAsync(() -> getQuotation());
var weatherCF =

CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF
.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);
})
.thenCompose(
quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(
weather ->
buildPage(quotation, weather)));
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The Travel Agency Example

il

Quotation Server A

il

Quotation Server B

Quotation Server C

(] —

e Weather Forecast Server A

Agency Weather Forecast Server B

il i

Weather Forecast Server C
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Structured Scope

It needs to be closed (try with resources FTW!)
It creates virtual threads on demand

Pattern:

- Launch tasks

- Call join()

- Get the results
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StructuredTaskScope

A StructuredTaskScope object looks like an
ExecutorService

- It takes tasks and run then
- And returns Future

But:
- An executor lives with your application
- A task scope lives with your tasks




StructuredTaskScope

- ShutdownOnSuccess
- ShutdownOnFailure

Can be extended to implement specific needs




Extending StructuredTaskScope
Allows you to implement your own logic and error handling

handleComplete(Future<>) is the method you need to
override




CompletableFuture Based Travel Agency

var quotationCF =

CompletableFuture.supplyAsync(() -> getQuotation());
var weatherCF =

CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF
.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);
})
.thenCompose(
quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(
weather ->
buildPage(quotation, weather)));
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Stuctured Concurrency Based Travel Agency

try (var scope = new WeatherScope()) {
scope.fork(() -> readWeatherFromA());
scope.fork(() -> readWeatherFromB());
scope.fork(() -> readWeatherFromC();

scope.join();

Weather firstWeather = scope.getFirstWeather();
return firstWeather;
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Stuctured Concurrency Based Travel Agency

try (var scope = new QuotationScope()) {
scope.fork(() -> readQuotationFromA());
scope.fork(() -> readQuotationFromB());
scope.fork(() -> readQuotationFromC();

scope.join();

Quotation bestQuotation = scope.getBestQuotation();
return bestQuotation;
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Stuctured Concurrency Based Travel Agency

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;
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Stuctured Concurrency Based Travel Agency

protected void handleComplete(Future<Quotation> future) {

switch (future.state()) {
case RUNNING -> throw new IllegalStateException("Ooops");
case SUCCESS -> this.quotations.add(future.resultNow());
case FAILED -> this.exceptions.add(future.exceptionNow());
case CANCELLED -> { }

76
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Stuctured Concurrency Based Travel Agency

public Quotation bestQuotation() {
return this.quotations.stream()
.min(Comparator.comparing(Quotation: :quotation))
.orElseThrow(this: :exceptions);

¥

public QuotationException exceptions() {
QuotationException exception = new QuotationException();
this.exceptions.forEach(exception: :addSuppressed);
return exception;
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try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

78
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Stack Trace, ThreadDumps?

> jemd <pid> Thread.dump to file -format-json <filename.json>
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ThreadlLocal?

ThreadlLocal are made to pass some information
Without relying to method parameters!
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ThreadlLocal?

ThreadLocal is a variable bound to a thread
That can be read through this thread

ThreadLocal<String> threadLocal = new ThreadLocal<>();

threadlLocal.set("KEY_1");

System.out.println(threadLocal.get()); // KEY 1

new Thread(

() -> System.out.println(threadlLocal.get())
).start(); // null
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ThreadLocal under the hood

1) Thread local variables are stored in a map
And are mutable!

2) Creating a new thread copies the map from the current
thread

3) You know that there is a remove () method on
ThreadLocal?




Virtual Threads support
ThreadlLocal variables
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Virtual Threads support
ThreadlLocal variables

but you can do better!

22222222



Welcome to ScopedValue

ScopedValues are non-modifiable
They are not bound to a particular thread

ScopedValue<String> key = new ScopedValue.newInstance();

ScopedValue.where(key, "KEY_1")
.run(() -> doSomethingSmart()));

ScopedValue.where(key, "KEY 2")

.run(() -> doSomethingSmart())
.run(() -> soSomethingSmarter());
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