ORACLE

Loom: Virtual Threads and
StructuredConcurrency and ScopedValues

in the JDK 20

José Paumard

W 6w AN /) AR RS

Java Developer Advocate

Java Platform Group

N

@A @ 2%

https://twitter.com/JosePaumard

https://github.com/JosePaumard

https://www.youtube.com/user/java

https://www.youtube.com/user/JPaumard

https://www.youtube.com/c/coursenlignejava

https://www.youtube.com/hashtag/jepcafe

https://fr.slideshare.net/jpaumard

https://www.pluralsight.com/authors/jose-paumard

https://www.youtube.com/user/JPaumard
https://www.youtube.com/c/coursenlignejava
https://www.youtube.com/hashtag/jepcafe
https://fr.slideshare.net/jpaumard
https://www.pluralsight.com/authors/jose-paumard

z]ava' Learn Download Community Contribute News Future

JavaOne: That's a | .
Wrap

JavaOne 2022 is over, but catch the keynotes on
our YouTube page and don't miss next year!

Download Java 19 i

Regarder sur (8 YouTube

Currently Java 19

The Destination for Java Developers

Hundreds of tutorials, news and videos from the experts, all right here.

Get Started Resources

» Getting Started with Java 1 e Java News

3 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

https://dev.java/

4

JEP Café

Copyright © 2021, Oracle and/or its affiliates |

Xrjava e Oawibied Con

JavaOne: That's a
Wrap

= e

The Destination for Java Developefs

Dev.java

nside java

Announcing the inside Java Podcast #
New Project Lanal Early Access bwlld
OpanjDK Projects Glve Rise to inpovations in JOK 15 and Beyond

JEP proposed to target JDK 16: 383 Forelgn Linker AF| {Incubator)

Inside.java

2/7/2023

.
|-:f.~‘.n'

Inside Java
I Inside Jave

Inside Java Podcast

=’ Java Learn Download Contribute News Future

Home Events JavaDay JavaUser Groups JavaChampions Java Mascot Java Affinity Logo jDuchess

Java User Groups =’ ava Learn Download Contribute News Future

Home Events JavaDay JavaUser Groups Java Champions Java Mascot Java Affinity Logo jDuchess

(Java Da
r—) l ava: d
— User Group

o : g_{, ™
Participating in a Java User Group is a great way to connect, ¢ ")
developer peers, JUGs can be found on almost every continer < e
o —— 4

Java User Groups (JUGs} are volunteer organizations that striv
around the world. They provide a meeting place for Java user
solutions, increase networking, expand Java Technology expel
inclusive community. JUGs are the meeting point for the Java
collaborate with developer peers, Explore the list of JUGs glot

Oracle's Java Developer Relations Team is excited to re-introduce Java Day. By partnering with a local Java User Group (JUG)
near you, you'll have the opportunity to hear from Oracle's Java experts to evolve and advance your programming skills.

If you're a JUG leader/organizer, please send us an e-mail to request a Java Day event. If travel schedules align, we'll bring Java

Day to one of your future in-person JUG meet-ups with experts and giveaways. Make your request by sending_ an e-mail.

5 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

https://dev.java/community/

https://inside.java

4 Inside Java
o News and views from members of the Java team at Oracle
Shows: Podcast | Newscast | JEP Café | Sip Of Java dev.java | About| Jobs

Sort by: Date | Author | Tag

String Templates, JavaFX 19, and more at JavaOne @3 #

Nicolai Parlog on August 23, 2022 Amber Client Core Libraries

airhacks.fm: Java 19 Millions of Threads in No Time «)

Nicolai Parlog & Adam Bien (guest) on September 5, 2022 |Dk19 Loom

Job Opportunity: JavaFX Engineers
September 4, 2022

Java 8 to 18: Most important changes in the Java Platform 3
Aurelio Garcia-Ribeyro on August 29, 2022

6 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

https://inside.java/

Loom is a Work in Progress

Don’t believe what we say!

CALVIN & HOBBES © BIL WATTERSON

7 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Don’t believe what we sa

8

Loom is a Work in Progress

Copyright © 2021, Oracle and/or its affiliates

Authors
Owner

Type

Scope
Status
Release
Component
Discussion
Relates to
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

JEP 436: Virtual Threads (Second Preview)

Ron Pressler, Alan Bateman

Alan Bateman

Feature

SE

Completed

20

core-libs

loom dash dev at openjdk dot org
JEP 425: Virtual Threads (Preview)
Alex Buckley

Brian Goetz

2022/10/23 15:18

2023/01/18 21:51

8295817

Introduce virtual threads to the Java Platform. Virtual threads are lightweight
threads that dramatically reduce the effort of writing, maintaining, and observing
high-throughput concurrent applications. This is a preview AP

2/7/2023

Loom is a Work in Progress

David Delabassée oo |
@delabassee view)

Implementation of Virtual Threads (Preview) ¥4 “» 4
- Stats: 99468 lines in 1133 files changed: 91198 ins;
3598 del; 4672 mod %
#Javal9 #0penlDK #ProjectLoom

Traduire le Tweet

Don’t believe

openjdk/jdk

8284161:
Implementation of
- Virtual Threads...
hreads are lightweight

104k lines changed +95870 -8270 mEE N maintaining, and observing

liew API.

Alan Bateman committed May 7,2022 -0~ 9583e36)

9 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Loom is a Work in Progress

Don’t believe what we say

10

Copyright © 2021, Oracle and/or its affiliates |

JEP 437: Structured Concurrency (Second Incubator)

Authors
Owner

Type

Scope
Status
Release
Component
Discussion
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

Simplify multithreaded programming by introducing an API for structured
concurrency. Structured concurrency treats multiple tasks running in different
threads as a single unit of work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing observability. This is an

incubating API.

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Completed

20

core-libs

loom dash dev at openjdk dot org
Alex Buckley

Brian Goetz

2022/10/28 12:41
2023/01/13 17:18

8296037

2/7/2023

Loom is a Work in Progress

Don’t believe what we s

11

Copyright © 2021, Oracle and/or its affiliates |

JEP 429: Scoped Values (Incubator)

Authors Andrew Haley, Andrew Dinn
Owner Andrew Haley
Type Feature
Scope |DK
Status Integrated
Release 20
Component core-libs
Discussion loom dash dev at openjdk dot java dot net
Relates to 8286666: JEP 429: Implementation of Scoped Values (Incubator)
Reviewed by Alan Bateman, Alex Buckley
Endorsed by John Rose
Created 2021/03/04 11:03
Updated 2022/12/07 11:19
Issue 8263012

Summary

Introduce scoped values, which enable the sharing of immutable data within and
across threads. They are preferred to thread-local variables, especially when using

large numbers of virtual threads. This is an incubating API.

2/7/2023

Loom is a Work in Progress

Don’t believe what we s

JEP 429: Scoped Values (Incubator)

Authors
Owner

Type

Scope
Status
Release
Component
Discussion
Relates to
Reviewed by
Endorsed by
Created
Updated
Issue

Summary

Andrew Haley, Andrew Dinn

Andrew Haley

Feature

JDK

Integrated

20

core-libs

loom dash dev at openjdk dot java dot net
8286666: |EP 429: Implementation of Scoped Values (Incubator)
Alan Bateman, Alex Buckley

John Rose

2021/03/04 11:03

2022/12/07 11:19

8263012

12 Copyright © 2021, Oracle and/or its affiliates |

2/7/2023

Adoption ? e ——

rCoge () mmes I Mageets O Actioss 0 Secwty 1Y g

¥ oman - P 2 vwuts O 0up D515 e As e ¢ u

U echgse [jetty.project nas. I
3 monn e Undie ok g whuant und hug 90 comvriig
»Onte C) s Mt 1) Baleteests 0 D Asern [B ™

Vert.x Virtual Threads Incubator oy e "

Support Loom #8007 . easiep N il
m-n.--u.- — . e m @ l-.m-lfua-' 4 v Om A e Mgt 1 Seriog Sask 3 mid Jou 11 2 il i
Y m———— Incubator for virtual threads based prototyp) : sty 3y o
s oy et 2k README st Wegrate b0 Stihy 8508 1 wat Jows 10 I murite gt
wor Prerequisites [o —

Urmancermmnt Descrigmen
WITY proges | Loom beerg siteg sted 4)

e waskt wbew g b surty s~ @ VOrLX 4.3.3 i w285
v o = Java 19 using preview feature i Ao A o L
o OpentDK 19 EA SLADNE me
BN T R S— o Maven
o Intelij Project Loom Experiment using Spring Boot, Spring
O ADerdet st

WebMVC, and Postgres

... HELIDON NiIMA "¢ spring. ... s

Irvasd vy
s #0007 - SvppertLoem. ¢ o Async/await incubator

. 8
June 22, 2022 #relegae o Execute blocking incubator * &)
. » Examples Helidon 4.0.0ALPHAL is now released with our brand new Helidon Nima, . ": Sprlng Blog All Posts Engineering Releases
Qua rkus 2.1 o.o.F'na| rel-—'-- {mnuhnu .|_nv'.u.|l threads-hased web server l"’l\(!\ll.'l wirly nccess rolense : e
for those of you interested in the latest Juva technology, but it Is not yot
I suitable for production use! This e

Preliminary work on Loom's Virroal Thrends o . .
virtual threads and various Embracing Virtual Threads

refinements all over the place | i .. s . . ont ™

‘ By Guillaume Smet

New month, new Quarkis feature release, you know the ooll; Quarkus 2.10.0.Final has landed Virtual Threads

Thas version & 3 mix of exploratory work and refinements on existing extansions: Jown 19 s virtuasd threects 28 8 previww feature, describied i JT7 425, Vietusd ihrwads are schedobd 10 run in platform threads When & victad ibread blacks, & i perked snd
another virtual thread can run in s place, Large rumbers of virtusl threads can run concurreatly, provided that they moatly Black. This workdosd & typica in web applications where requests spend much of their time walting for
o Preliminary work on Loom's vntual threads responses from databone queries or other extennal services.

13 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

It all Started with a Runnable...

14 Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted 2/7/2023

1995: Threads and Runnables

1995: Thread, Runnable

Runnable task = new Runnable() {

void run() {
System.out.println("I am running in thread " +

Thread.currentThread() .getName()); _
| Doug Lea

} Concurrent
}s Programming in Java
Second Edition

Thread thread = new Thread(task);

thread.start();
thread.join(); // blocks

2/7/2023

15 Copyright © 2021, Oracle and/or its affiliates |

1995: Threads and Runnables

1995: Thread, Runnable

Object key = new Object();

synchronized(key) {
System.out.println("Only one thread can execute me!");

¥

16 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

Callable<String> task = new Callable<String>() {

@Override
public String call() throws Exception ({ P L

oooooooooooooooooooooooooo

n . 1 anoDouc Lea

return "I am running in thread " +
Thread.currentThread() .getName();

s

17 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

ExecutorService service =
Executors.newFixedThreadPool (4);

Future<String> future = service.submit(task);

Wait lists inside!

18 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

String result = future.get(); // blocks

String result = future.get(10, TimeUnit.MICROSECONDS);

boolean cancelled = future.cancel(true);

19 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

2004: Java Util Concurrent

2004: Java 5, java.util.concurrent

Lock lock = new ReentrantLock();
lock.lock();

try {

System.out.println("Only one thread can execute me!");

} finally {
lock.unlock();

¥

20 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

2004: Java Util Concurrent
2004: Java 5, java.util.concurrent

Plus many more concurrent classes:

- Lock, Semaphore, Barrier, CountDownlLatch
- BlockingQueue, ConcurrentMap

- CopyOnWriteArraylList

2011: Fork / Join

2011 — 2014 (Java 7, Java 8):
- Fork / Join, parallel Stream

Allows to compute elements in parallel

Two phases:

- fork = splits a task in two sub-tasks

- join = merge the result of two sub-tasks

Uses work stealing to spread the tasks among threads

2014: CompletionStage

2011 — 2014 (Java 7, Java 8):
- CompletionStage, CompletableFuture

Subtype of Future
Asynchronous programming model
Allows to trigger tasks on the outcome of other tasks

User can control which thread executes what task
Exceptions handling

One thing stays the same

Once a thread begins to process a task it cannot release it
Either the task completes with a result
Or is completes with an exception

It may be an InterruptedException

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

2023?: Loom!

2022+ (prev. in Java 19) | v : @ .

25 Copyright © 2021, Oracle and/or its affiliates |

Why Do We Need Concurrency?

26 Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted 2/7/2023

Concurrency: Computations vs. 1/O
Concurrency may be used in two different contexts:
1) Processing in-memory data in parallel, using all the CPU cores

- Each thread uses 100% of your CPU cores
- Threads are mostly not blocking

Concurrency: Computations vs. 1/O
Concurrency may be used in two different contexts:
2) Handling numerous blocking requests / responses

HTTP Server — 1 request <=|=> 1 thread
DB Server — 1 transaction <=|=> 1 thread

Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

—> Preparing the request
Time scale: 10ns

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

—> Waiting for the response
Time scale: 10ms

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Concurrency for 1/0

Processing |/O data:
- Each task waits for the data it needs to process

Processing the response
Time scale: 10ns

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Concurrency for 1/0

Processing |/O data:

A Thread is idle 99.9999% of the time!

ns

ms

How many threads do you need to keep your CPU busy?

2/7/2023

ns

Concurrency for 1/0

A thread is not cheap!

- Thread startup time: ~1ms

- Thread memory consumption: 2MB of stack

- Context switching: ~100us (depends on the OS)

Having 1 million platform threads is not possible!

Solutions?

CompletionState / CompletableFuture
Asynchronous / Reactive programming
Async / Await (C# or Kotlin)

Mono / Multi (Spring)

Uni / Multi (Quarkus)

Solutions?

Breaking down a request handling into small stages
Then compose them into a pipeline

The code becomes:

- hard to read and write (callback hell)

- hard to debug (call stack?)

- hard to test

- hard to profile

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

[.oom to the Rescue

36 Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted 2/7/2023

Virtual Thread!

// platform threads
var pthread =

System.out.println("platform

1)
pthread.start();

pthread.join();

new Thread(() -> {

+ Thread.currentThread());

37 Copyright © 2021, Oracle and/or its affiliates |

2/7/2023

Virtual Thread!

// virtual threads
var vthread = Thread.startVirtualThread(() -> {
System.out.println("virtual " + Thread.currentThread());

})s

vthread.join();

// platform threads
var pthread = Thread.ofPlLatform(() -> {
System.out.println("platform " + Thread.currentThread());

1)
pthread.join();

38 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Virtual Thread!

// platform threads
platform Thread[#14,Thread-0,5,main]

// virtual threads
virtual VirtualThread[#15]/runnable@ForkJoinPool-1-worker-1

A virtual thread runs on a carrier thread from a Fork-Join pool
(not the common fork join pool)

This pool implements a FIFO queue (instead of a LIFO one)

39 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Thread Polymorphic Builder

// platform threads
var pthread = Thread.ofPlatform()
.name("platform-", 0)
start(() -> {
System.out.println("platform

1)
pthread.join();

+ Thread.currentThread());

// virtual threads
var vthread = Thread.ofVirtual()
.name("virtual-", 9)
.start(() -> {
System.out.println("virtual " + Thread.currentThread());

1)

vthread. join();

40 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Copyright © 2021, Oracle a

How many virtual threads can | run?

nd/or its affiliates 2/7/2023

Running a Thread

Platform/OS thread (starts in ms)
- Creates a 2MB stack upfront
- System call to ask the OS to schedule the thread

Virtual thread (starts in ps)
- Grow and shrink the stack dynamically

- Use a specific fork-join pool of platform threads (carrier
threads)

- One platform thread per core

Copyright © 2021, Oracle a

How does it work under the hood?

nd/or its affiliates 2/7/2023

Continuation

44 Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted 2/7/2023

Where Does the Magic Come From?

@ChangesCurrentThread
private boolean yieldContinuation() {
boolean notifyJvmti = notifyJvmtiEvents;
// unmount
if (notifyJvmti) notifyJvmtiUnmountBegin(false);
unmount();

try {

return Continuation.yield(VTHREAD SCOPE);
} finally {

// re-mount
mount();

if (notifyJvmti) notifyJlvmtiMountEnd(false);

45 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Int
Continuation.yield() o ”a/Ap,

yield() copies the stack to the heap

sleep() ‘--§233£E£1§‘\‘\5\
>

start() ——

stack heap
Platform thread 1

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Int
Continuation.yield() o ”a/Ap,

yield() copies the stack to the heap

start() ——

stack heap
Platform thread 1

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Int
Continuation.run() er’7<9/,<|,o/

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

re—PUn() ==

€

start() ——

stack heap
Platform thread 1

48 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Int
Continuation.run() er’7<9/,<|,o/

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

é
start() —— —

stack stack heap
Platform thread 1 Platform thread 2

49 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

jdk.internal.vm.Continuation

/
ey AP

var scope = new ContinuationScope("hello");
var continuation = new Continuation(scope, () -> {
System.out.println("C1");
Continuation.yield(scope);
System.out.println("C2");
Continuation.yield(scope);
System.out.println("C3");
})s
System.out.println("start™);
continuation.run();
System.out.println("came back");
continuation.run();
System.out.println("back again");
continuation.run();
System.out.println("back again again");

Execution:

start

C1

came back

C2

back again
C3

back again again

50

Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

There Are Cases Where It Does Not Work
Sometimes virtual threads are pinned to their carrier thread

Native code that does an upcall to Java may use an address on
stack

—> the stack frames can not be copied

Running a Virtual Thread

A Platform Thread Is a thin wrapper on an OS Thread
A Virtual Thread is not tied to a particular OS Thread

A Virtual Thread only consumes an OS Thread
when it performs calculations on the CPU

Copyright © 2021, Oracle a

Creating a virtual thread is cheap

Blocking a virtual thread is cheap

Pooling virtual threads is useless

nd/or its affiliates 2/7/2023

Loom is not Implemented « By the JVM »

Most of the code of the virtual threads scheduling is written in
Java in the JDK (jdk.internal.vm.Continuation)

Written in Cin the JVM:
- Copy of the stack frames back and forth
- GCs modified to find references in stack on heap

In the JDK

All blocking codes are changed to
- Check if current thread is a virtual thread

- Ifitis, instead of blocking:
- Register a handler that will be called when the OS is
ready (using NIO)
- Call Continuation.yield()

- When the handler is called, find a carrier thread and call
Continuation.start()

55 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

There Are Cases Where It Does Not Work

Sometimes virtual threads are pinned to their carrier thread

Synchronized block are written in assembly and uses an address
on the stack

—> the stack frames can not be copied

Prefer ReentrantLock over synchronized()

Stealth Rewrite of the JDK for Loom

Java 13

- JEP 353 Reimplement the Legacy Socket API

Java 14

- JEP 373 Reimplement the Legacy Datagram Socket API
- JEP 374 Deprecate and Disable Biased Locking

Stealth Rewrite of the JDK for Loom

Java 18
- JEP 416 Reimplement Core Reflection with Method Handles

- JEP 418 (Internet-Address Resolution SPI) in JDK 18 defined a
service-provider interface for host name and address lookup.
This will allow third-party libraries to implement alternative
java.net.InetAddress resolvers that do not pin threads during
host lookup

Loom Idea: Under the Hood

The JDK creates as many virtual threads as the user want
- Mount a virtual thread to an available carrier thread when
starting

- If blocking, unmount the current virtual thread and mount
another virtual thread

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

Structured Concurrency

61 Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted 2/7/2023

Why Do You Need Structured Concurrency?

Because thread dumps work well with several thousands of
threads, not millions of threads

Not to talk about what can happen in your IDE...

You need to structure these threads

Structured Task Scope

Welcome to Loom Scopes
- It's a pool of threads, that creates virtual threads on demand
- Once a task is done, the thread dies

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

The Travel Agency Example

A travel agency sells travels. On the response page, it wants to
display:

- the quotation
- the weather forecast for the destination

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

The Travel Agency Example

Quotation

Weather Forecast
Travel Page

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

CompletableFuture Based Travel Agency

var quotationCF =

CompletableFuture.supplyAsync(() -> getQuotation());
var weatherCF =

CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF
.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);
})
.thenCompose(
quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(
weather ->
buildPage(quotation, weather)));

66 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023 E

The Travel Agency Example

il

Quotation Server A

il

Quotation Server B

Quotation Server C

(] —

e Weather Forecast Server A

Agency Weather Forecast Server B

il i

Weather Forecast Server C

67 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Structured Scope

It needs to be closed (try with resources FTW!)
It creates virtual threads on demand

Pattern:

- Launch tasks

- Call join()

- Get the results

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

StructuredTaskScope

A StructuredTaskScope object looks like an
ExecutorService

- It takes tasks and run then
- And returns Future

But:
- An executor lives with your application
- A task scope lives with your tasks

StructuredTaskScope

- ShutdownOnSuccess
- ShutdownOnFailure

Can be extended to implement specific needs

Extending StructuredTaskScope
Allows you to implement your own logic and error handling

handleComplete(Future<>) is the method you need to
override

CompletableFuture Based Travel Agency

var quotationCF =

CompletableFuture.supplyAsync(() -> getQuotation());
var weatherCF =

CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF
.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);
})
.thenCompose(
quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(
weather ->
buildPage(quotation, weather)));

72 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023 E

Stuctured Concurrency Based Travel Agency

try (var scope = new WeatherScope()) {
scope.fork(() -> readWeatherFromA());
scope.fork(() -> readWeatherFromB());
scope.fork(() -> readWeatherFromC();

scope.join();

Weather firstWeather = scope.getFirstWeather();
return firstWeather;

73 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Stuctured Concurrency Based Travel Agency

try (var scope = new QuotationScope()) {
scope.fork(() -> readQuotationFromA());
scope.fork(() -> readQuotationFromB());
scope.fork(() -> readQuotationFromC();

scope.join();

Quotation bestQuotation = scope.getBestQuotation();
return bestQuotation;

74 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Stuctured Concurrency Based Travel Agency

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

75 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Stuctured Concurrency Based Travel Agency

protected void handleComplete(Future<Quotation> future) {

switch (future.state()) {
case RUNNING -> throw new IllegalStateException("Ooops");
case SUCCESS -> this.quotations.add(future.resultNow());
case FAILED -> this.exceptions.add(future.exceptionNow());
case CANCELLED -> { }

76

Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Stuctured Concurrency Based Travel Agency

public Quotation bestQuotation() {
return this.quotations.stream()
.min(Comparator.comparing(Quotation: :quotation))
.orElseThrow(this: :exceptions);

¥

public QuotationException exceptions() {
QuotationException exception = new QuotationException();
this.exceptions.forEach(exception: :addSuppressed);
return exception;

77 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

78

Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

Stack Trace, ThreadDumps?

> jemd <pid> Thread.dump to file -format-json <filename.json>

79 Copyright © 2021, Oracle and/or its affiliates 2/7/2023

ThreadlLocal?

ThreadlLocal are made to pass some information
Without relying to method parameters!

Copyright © 2021, Oracle and/or its affiliates 2/7/2023

ThreadlLocal?

ThreadLocal is a variable bound to a thread
That can be read through this thread

ThreadLocal<String> threadLocal = new ThreadLocal<>();

threadlLocal.set("KEY_1");

System.out.println(threadLocal.get()); // KEY 1

new Thread(

() -> System.out.println(threadlLocal.get())
).start(); // null

81

Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

ThreadLocal under the hood

1) Thread local variables are stored in a map
And are mutable!

2) Creating a new thread copies the map from the current
thread

3) You know that there is a remove () method on
ThreadLocal?

Virtual Threads support
ThreadlLocal variables

22222222

Virtual Threads support
ThreadlLocal variables

but you can do better!

22222222

Welcome to ScopedValue

ScopedValues are non-modifiable
They are not bound to a particular thread

ScopedValue<String> key = new ScopedValue.newInstance();

ScopedValue.where(key, "KEY_1")
.run(() -> doSomethingSmart()));

ScopedValue.where(key, "KEY 2")

.run(() -> doSomethingSmart())
.run(() -> soSomethingSmarter());

85 Copyright © 2021, Oracle and/or its affiliates | 2/7/2023

	Pillar Title slides
	Diapositive 1 Loom: Virtual Threads and StructuredConcurrency and ScopedValues in the JDK 20
	Diapositive 2
	Diapositive 3
	Diapositive 4 Tune in!
	Diapositive 5
	Diapositive 6
	Diapositive 7 Loom is a Work in Progress
	Diapositive 8 Loom is a Work in Progress
	Diapositive 9 Loom is a Work in Progress
	Diapositive 10 Loom is a Work in Progress
	Diapositive 11 Loom is a Work in Progress
	Diapositive 12 Loom is a Work in Progress
	Diapositive 13 Adoption ?
	Diapositive 14 It all Started with a Runnable…
	Diapositive 15 1995: Threads and Runnables
	Diapositive 16 1995: Threads and Runnables
	Diapositive 17 2004: Java Util Concurrent
	Diapositive 18 2004: Java Util Concurrent
	Diapositive 19 2004: Java Util Concurrent
	Diapositive 20 2004: Java Util Concurrent
	Diapositive 21 2004: Java Util Concurrent
	Diapositive 22 2011: Fork / Join
	Diapositive 23 2014: CompletionStage
	Diapositive 24 One thing stays the same
	Diapositive 25 2023?: Loom!
	Diapositive 26 Why Do We Need Concurrency?
	Diapositive 27 Concurrency: Computations vs. I/O
	Diapositive 28 Concurrency: Computations vs. I/O
	Diapositive 29 Concurrency for I/O
	Diapositive 30 Concurrency for I/O
	Diapositive 31 Concurrency for I/O
	Diapositive 32 Concurrency for I/O
	Diapositive 33 Concurrency for I/O
	Diapositive 34 Solutions?
	Diapositive 35 Solutions?
	Diapositive 36 Loom to the Rescue
	Diapositive 37 Virtual Thread!
	Diapositive 38 Virtual Thread!
	Diapositive 39 Virtual Thread!
	Diapositive 40 Thread Polymorphic Builder
	Diapositive 41
	Diapositive 42 Running a Thread
	Diapositive 43
	Diapositive 44 Continuation
	Diapositive 45 Where Does the Magic Come From?
	Diapositive 46 Continuation.yield()
	Diapositive 47 Continuation.yield()
	Diapositive 48 Continuation.run()
	Diapositive 49 Continuation.run()
	Diapositive 50 jdk.internal.vm.Continuation
	Diapositive 51 There Are Cases Where It Does Not Work
	Diapositive 52 Running a Virtual Thread
	Diapositive 53
	Diapositive 54 Loom is not Implemented « By the JVM »
	Diapositive 55 In the JDK
	Diapositive 56 There Are Cases Where It Does Not Work
	Diapositive 57 Stealth Rewrite of the JDK for Loom
	Diapositive 58 Stealth Rewrite of the JDK for Loom
	Diapositive 59 Loom Idea: Under the Hood
	Diapositive 60
	Diapositive 61 Structured Concurrency
	Diapositive 62 Why Do You Need Structured Concurrency?
	Diapositive 63 Structured Task Scope
	Diapositive 64 The Travel Agency Example
	Diapositive 65 The Travel Agency Example
	Diapositive 66 CompletableFuture Based Travel Agency
	Diapositive 67 The Travel Agency Example
	Diapositive 68 Structured Scope
	Diapositive 69 StructuredTaskScope
	Diapositive 70 StructuredTaskScope
	Diapositive 71 Extending StructuredTaskScope
	Diapositive 72 CompletableFuture Based Travel Agency
	Diapositive 73 Stuctured Concurrency Based Travel Agency
	Diapositive 74 Stuctured Concurrency Based Travel Agency
	Diapositive 75 Stuctured Concurrency Based Travel Agency
	Diapositive 76 Stuctured Concurrency Based Travel Agency
	Diapositive 77 Stuctured Concurrency Based Travel Agency
	Diapositive 78
	Diapositive 79 Stack Trace, ThreadDumps?
	Diapositive 80 ThreadLocal?
	Diapositive 81 ThreadLocal?
	Diapositive 82 ThreadLocal under the hood
	Diapositive 83
	Diapositive 84
	Diapositive 85 Welcome to ScopedValue
	Diapositive 86

