
Loom: Virtual Threads and 
StructuredConcurrency and ScopedValues
in the JDK 20

José Paumard 

Java Developer Advocate

Java Platform Group



https://twitter.com/JosePaumard

https://github.com/JosePaumard

https://www.youtube.com/user/java

https://www.youtube.com/user/JPaumard

https://www.youtube.com/c/coursenlignejava

https://www.youtube.com/hashtag/jepcafe

https://fr.slideshare.net/jpaumard

https://www.pluralsight.com/authors/jose-paumard

https://www.youtube.com/user/JPaumard
https://www.youtube.com/c/coursenlignejava
https://www.youtube.com/hashtag/jepcafe
https://fr.slideshare.net/jpaumard
https://www.pluralsight.com/authors/jose-paumard


2/7/2023Copyright © 2021, Oracle and/or its affiliates  |3

https://dev.java/

https://dev.java/


2/7/2023Copyright © 2021, Oracle and/or its affiliates  |4

Tune in!

Inside Java Newscast

JEP Café

Dev.java

Inside.java

Inside Java Podcast

Sip of Java
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Don’t believe what we say!

Loom is a Work in Progress
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Don’t believe what we say!

Loom is a Work in Progress

http://jdk.java.net/loom/
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Adoption ?
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It all Started with a Runnable…
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1995: Thread, Runnable

1995: Threads and Runnables

Runnable task = new Runnable() {
void run() {

System.out.println("I am running in thread " + 
Thread.currentThread().getName());

}
};
Thread thread = new Thread(task);
thread.start();
thread.join(); // blocks



2/7/2023Copyright © 2021, Oracle and/or its affiliates  |16

1995: Thread, Runnable

1995: Threads and Runnables

Object key = new Object();

synchronized(key) {
System.out.println("Only one thread can execute me!");

}
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2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

Callable<String> task = new Callable<String>() {

@Override
public String call() throws Exception {

return "I am running in thread " + 
Thread.currentThread().getName();

}
};
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2004: Java 5, java.util.concurrent

Wait lists inside! 

2004: Java Util Concurrent

ExecutorService service = 
Executors.newFixedThreadPool(4);

Future<String> future = service.submit(task);
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2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

String result = future.get(); // blocks

String result = future.get(10, TimeUnit.MICROSECONDS);

boolean cancelled = future.cancel(true);
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2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

Lock lock = new ReentrantLock();
lock.lock();
try {

System.out.println("Only one thread can execute me!");

} finally {
lock.unlock();

}
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2004: Java 5, java.util.concurrent

Plus many more concurrent classes:

- Lock, Semaphore, Barrier, CountDownLatch

- BlockingQueue, ConcurrentMap

- CopyOnWriteArrayList

2004: Java Util Concurrent
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2011 – 2014 (Java 7, Java 8): 

- Fork / Join, parallel Stream

Allows to compute elements in parallel

Two phases: 

- fork = splits a task in two sub-tasks

- join = merge the result of two sub-tasks

Uses work stealing to spread the tasks among threads

2011: Fork / Join
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2011 – 2014 (Java 7, Java 8): 

- CompletionStage, CompletableFuture

Subtype of Future

Asynchronous programming model

Allows to trigger tasks on the outcome of other tasks

User can control which thread executes what task

Exceptions handling

2014: CompletionStage
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Once a thread begins to process a task it cannot release it

Either the task completes with a result

Or is completes with an exception 

It may be an InterruptedException

One thing stays the same
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2022+ (prev. in Java 19)

2023?: Loom!
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Why Do We Need Concurrency?
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Concurrency may be used in two different contexts:

1) Processing in-memory data in parallel, using all the CPU cores

- Each thread uses 100% of your CPU cores

- Threads are mostly not blocking

Concurrency: Computations vs. I/O
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Concurrency may be used in two different contexts:

2) Handling numerous blocking requests / responses

HTTP Server  1 request <=|=> 1 thread

DB Server  1 transaction <=|=> 1 thread

Concurrency: Computations vs. I/O
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Processing I/O data: 

- Each task waits for the data it needs to process

Concurrency for I/O

Preparing the request
Time scale: 10ns
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Processing I/O data: 

- Each task waits for the data it needs to process

Concurrency for I/O

Waiting for the response
Time scale: 10ms
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Processing I/O data: 

- Each task waits for the data it needs to process

Concurrency for I/O

Processing the response
Time scale: 10ns
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Processing I/O data: 

A Thread is idle 99.9999% of the time!

How many threads do you need to keep your CPU busy?

Concurrency for I/O

ms nsns



2/7/2023Copyright © 2021, Oracle and/or its affiliates  |33

A thread is not cheap!

- Thread startup time: ~1ms

- Thread memory consumption: 2MB of stack

- Context switching: ~100ms (depends on the OS)

Having 1 million platform threads is not possible!

Concurrency for I/O
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CompletionState / CompletableFuture

Asynchronous / Reactive programming

Async / Await (C# or Kotlin)

Mono / Multi (Spring)

Uni / Multi (Quarkus)

Solutions? 
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Breaking down a request handling into small stages

Then compose them into a pipeline

The code becomes:

- hard to read and write (callback hell)

- hard to debug (call stack?)

- hard to test

- hard to profile

Solutions?
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Loom to the Rescue
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Virtual Thread!

// platform threads
var pthread = new Thread(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.start();
pthread.join();
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Virtual Thread!

// virtual threads
var vthread = Thread.startVirtualThread(() -> {
System.out.println("virtual " + Thread.currentThread());

});
vthread.join();

// platform threads
var pthread = Thread.ofPlatform(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.join();
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A virtual thread runs on a carrier thread from a Fork-Join pool 
(not the common fork join pool)

This pool implements a FIFO queue (instead of a LIFO one)

Virtual Thread!

// platform threads
platform Thread[#14,Thread-0,5,main]

// virtual threads
virtual VirtualThread[#15]/runnable@ForkJoinPool-1-worker-1
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Thread Polymorphic Builder

// platform threads
var pthread = Thread.ofPlatform()

.name("platform-", 0)

.start(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.join();

// virtual threads
var vthread = Thread.ofVirtual()

.name("virtual-", 0)

.start(() -> {
System.out.println("virtual " + Thread.currentThread());

});
vthread.join();
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How many virtual threads can I run?
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Platform/OS thread (starts in ms)

- Creates a 2MB stack upfront
- System call to ask the OS to schedule the thread

Virtual thread (starts in μs)

- Grow and shrink the stack dynamically
- Use a specific fork-join pool of platform threads (carrier 

threads)
- One platform thread per core

Running a Thread



2/7/2023Copyright © 2021, Oracle and/or its affiliates  |43

How does it work under the hood?
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Continuation
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Example of Thread.sleep():

Calls Contination.yield()

Where Does the Magic Come From?

@ChangesCurrentThread
private boolean yieldContinuation() {

boolean notifyJvmti = notifyJvmtiEvents;
// unmount
if (notifyJvmti) notifyJvmtiUnmountBegin(false);
unmount();
try {

return Continuation.yield(VTHREAD_SCOPE);
} finally {

// re-mount
mount();
if (notifyJvmti) notifyJvmtiMountEnd(false);

}
}
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yield() copies the stack to the heap

Continuation.yield()

heapstack

start()

Platform thread 1

sleep()
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yield() copies the stack to the heap

Continuation.yield()

heapstack

start()

Platform thread 1
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run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

Continuation.run()

stack

start()

Platform thread 1

heap
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run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

Continuation.run()

stack

start()

Platform thread 1

stack

Platform thread 2

heap



2/7/2023Copyright © 2021, Oracle and/or its affiliates  |50

jdk.internal.vm.Continuation

var scope = new ContinuationScope("hello");
var continuation = new Continuation(scope, () -> {

System.out.println("C1");
Continuation.yield(scope);
System.out.println("C2");
Continuation.yield(scope);
System.out.println("C3");

});
System.out.println("start");
continuation.run();
System.out.println("came back");
continuation.run();
System.out.println("back again");
continuation.run();
System.out.println("back again again");

Execution:
start
C1
came back
C2
back again
C3
back again again
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Sometimes virtual threads are pinned to their carrier thread

Native code that does an upcall to Java may use an address on 
stack

 the stack frames can not be copied

There Are Cases Where It Does Not Work
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A Platform Thread is a thin wrapper on an OS Thread

A Virtual Thread is not tied to a particular OS Thread

A Virtual Thread only consumes an OS Thread

when it performs calculations on the CPU

Running a Virtual Thread
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Creating a virtual thread is cheap

Blocking a virtual thread is cheap

Pooling virtual threads is useless
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Most of the code of the virtual threads scheduling is written in 
Java in the JDK (jdk.internal.vm.Continuation)

Written in C in the JVM:

- Copy of the stack frames back and forth

- GCs modified to find references in stack on heap

Loom is not Implemented « By the JVM »
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All blocking codes are changed to

- Check if current thread is a virtual thread

- If it is, instead of blocking:
- Register a handler that will be called when the OS is 

ready (using NIO)

- Call Continuation.yield()

- When the handler is called, find a carrier thread and call 
Continuation.start()

In the JDK
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Sometimes virtual threads are pinned to their carrier thread

Synchronized block are written in assembly and uses an address 
on the stack

 the stack frames can not be copied

Prefer ReentrantLock over synchronized()

There Are Cases Where It Does Not Work
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Java 13

- JEP 353 Reimplement the Legacy Socket API

Java 14

- JEP 373 Reimplement the Legacy Datagram Socket API

- JEP 374 Deprecate and Disable Biased Locking

Stealth Rewrite of the JDK for Loom
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Java 18

- JEP 416 Reimplement Core Reflection with Method Handles

- JEP 418 (Internet-Address Resolution SPI) in JDK 18 defined a 
service-provider interface for host name and address lookup. 
This will allow third-party libraries to implement alternative 
java.net.InetAddress resolvers that do not pin threads during 
host lookup

Stealth Rewrite of the JDK for Loom
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The JDK creates as many virtual threads as the user want

- Mount a virtual thread to an available carrier thread when 
starting

- If blocking, unmount the current virtual thread and mount 
another virtual thread

Loom Idea: Under the Hood



Coffee (or whatever) 
break!
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Structured Concurrency
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Because thread dumps work well with several thousands of 
threads, not millions of threads

Not to talk about what can happen in your IDE…

You need to structure these threads

Why Do You Need Structured Concurrency?
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Welcome to Loom Scopes

- It’s a pool of threads, that creates virtual threads on demand

- Once a task is done, the thread dies

Structured Task Scope
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A travel agency sells travels. On the response page, it wants to 
display:

- the quotation

- the weather forecast for the destination

The Travel Agency Example
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The Travel Agency Example

Quotation

Weather Forecast
Travel Page
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CompletableFuture Based Travel Agency

var quotationCF = 
CompletableFuture.supplyAsync(() -> getQuotation());

var weatherCF = 
CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF = 
quotationCF

.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);

})
.thenCompose(

quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(

weather -> 
buildPage(quotation, weather)));



Quotation Server A
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The Travel Agency Example

Quotation Server B

Quotation Server C

Weather Forecast Server A

Weather Forecast Server B

Weather Forecast Server C

Travel
Agency
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It needs to be closed (try with resources FTW!)

It creates virtual threads on demand

Pattern: 

- Launch tasks

- Call join()

- Get the results

Structured Scope
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A StructuredTaskScope object looks like an 
ExecutorService

- It takes tasks and run then

- And returns Future

But:

- An executor lives with your application

- A task scope lives with your tasks

StructuredTaskScope
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- ShutdownOnSuccess

- ShutdownOnFailure

Can be extended to implement specific needs

StructuredTaskScope
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Allows you to implement your own logic and error handling

handleComplete(Future<>) is the method you need to 
override

Extending StructuredTaskScope
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CompletableFuture Based Travel Agency

var quotationCF = 
CompletableFuture.supplyAsync(() -> getQuotation());

var weatherCF = 
CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF = 
quotationCF

.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);

})
.thenCompose(

quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(

weather -> 
buildPage(quotation, weather)));
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Stuctured Concurrency Based Travel Agency

try (var scope = new WeatherScope()) {

scope.fork(() -> readWeatherFromA());
scope.fork(() -> readWeatherFromB());
scope.fork(() -> readWeatherFromC();

scope.join();

Weather firstWeather = scope.getFirstWeather();
return firstWeather;

}



2/7/2023Copyright © 2021, Oracle and/or its affiliates  |74

Stuctured Concurrency Based Travel Agency

try (var scope = new QuotationScope()) {

scope.fork(() -> readQuotationFromA());
scope.fork(() -> readQuotationFromB());
scope.fork(() -> readQuotationFromC();

scope.join();

Quotation bestQuotation = scope.getBestQuotation();
return bestQuotation;

}
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Stuctured Concurrency Based Travel Agency

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

}
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Stuctured Concurrency Based Travel Agency

protected void handleComplete(Future<Quotation> future) {

switch (future.state()) {
case RUNNING -> throw new IllegalStateException("Ooops");
case SUCCESS -> this.quotations.add(future.resultNow());
case FAILED -> this.exceptions.add(future.exceptionNow());
case CANCELLED -> { }

}
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Stuctured Concurrency Based Travel Agency

public Quotation bestQuotation() {
return this.quotations.stream()

.min(Comparator.comparing(Quotation::quotation))

.orElseThrow(this::exceptions);
}

public QuotationException exceptions() {
QuotationException exception = new QuotationException();
this.exceptions.forEach(exception::addSuppressed);
return exception;

}
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try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

}
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Stack Trace, ThreadDumps?

> jcmd <pid> Thread.dump_to_file –format-json <filename.json>
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ThreadLocal are made to pass some information

Without relying to method parameters!

ThreadLocal?
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ThreadLocal is a variable bound to a thread

That can be read through this thread

ThreadLocal?

ThreadLocal<String> threadLocal = new ThreadLocal<>();

threadLocal.set("KEY_1");

System.out.println(threadLocal.get()); // KEY_1

new Thread(
() -> System.out.println(threadLocal.get())

).start(); // null
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1) Thread local variables are stored in a map
And are mutable!

2) Creating a new thread copies the map from the current
thread

3) You know that there is a remove() method on 
ThreadLocal?

ThreadLocal under the hood
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Virtual Threads support
ThreadLocal variables

but you can do better!
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Virtual Threads support
ThreadLocal variables

but you can do better!
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ScopedValues are non-modifiable

They are not bound to a particular thread

Welcome to ScopedValue

ScopedValue<String> key = new ScopedValue.newInstance();

ScopedValue.where(key, "KEY_1") 
.run(() -> doSomethingSmart()));

ScopedValue.where(key, "KEY_2") 
.run(() -> doSomethingSmart())
.run(() -> soSomethingSmarter());



Loom is Great!
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