
Loom: Virtual Threads and
StructuredConcurrency and ScopedValues
in the JDK 20

José Paumard

Java Developer Advocate

Java Platform Group

https://twitter.com/JosePaumard

https://github.com/JosePaumard

https://www.youtube.com/user/java

https://www.youtube.com/user/JPaumard

https://www.youtube.com/c/coursenlignejava

https://www.youtube.com/hashtag/jepcafe

https://fr.slideshare.net/jpaumard

https://www.pluralsight.com/authors/jose-paumard

https://www.youtube.com/user/JPaumard
https://www.youtube.com/c/coursenlignejava
https://www.youtube.com/hashtag/jepcafe
https://fr.slideshare.net/jpaumard
https://www.pluralsight.com/authors/jose-paumard

2/7/2023Copyright © 2021, Oracle and/or its affiliates |3

https://dev.java/

https://dev.java/

2/7/2023Copyright © 2021, Oracle and/or its affiliates |4

Tune in!

Inside Java Newscast

JEP Café

Dev.java

Inside.java

Inside Java Podcast

Sip of Java

2/7/2023Copyright © 2021, Oracle and/or its affiliates |5

https://dev.java/community/

https://dev.java/community/

2/7/2023Copyright © 2021, Oracle and/or its affiliates |6

https://inside.java/

https://inside.java/

2/7/2023Copyright © 2021, Oracle and/or its affiliates |7

Don’t believe what we say!

Loom is a Work in Progress

2/7/2023Copyright © 2021, Oracle and/or its affiliates |8

Don’t believe what we say!

Loom is a Work in Progress

2/7/2023Copyright © 2021, Oracle and/or its affiliates |9

Don’t believe what we say!

Loom is a Work in Progress

2/7/2023Copyright © 2021, Oracle and/or its affiliates |10

Don’t believe what we say!

Loom is a Work in Progress

2/7/2023Copyright © 2021, Oracle and/or its affiliates |11

Don’t believe what we say!

Loom is a Work in Progress

2/7/2023Copyright © 2021, Oracle and/or its affiliates |12

Don’t believe what we say!

Loom is a Work in Progress

http://jdk.java.net/loom/

2/7/2023Copyright © 2021, Oracle and/or its affiliates |13

Adoption ?

2/7/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted14

It all Started with a Runnable…

2/7/2023Copyright © 2021, Oracle and/or its affiliates |15

1995: Thread, Runnable

1995: Threads and Runnables

Runnable task = new Runnable() {
void run() {

System.out.println("I am running in thread " +
Thread.currentThread().getName());

}
};
Thread thread = new Thread(task);
thread.start();
thread.join(); // blocks

2/7/2023Copyright © 2021, Oracle and/or its affiliates |16

1995: Thread, Runnable

1995: Threads and Runnables

Object key = new Object();

synchronized(key) {
System.out.println("Only one thread can execute me!");

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |17

2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

Callable<String> task = new Callable<String>() {

@Override
public String call() throws Exception {

return "I am running in thread " +
Thread.currentThread().getName();

}
};

2/7/2023Copyright © 2021, Oracle and/or its affiliates |18

2004: Java 5, java.util.concurrent

Wait lists inside!

2004: Java Util Concurrent

ExecutorService service =
Executors.newFixedThreadPool(4);

Future<String> future = service.submit(task);

2/7/2023Copyright © 2021, Oracle and/or its affiliates |19

2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

String result = future.get(); // blocks

String result = future.get(10, TimeUnit.MICROSECONDS);

boolean cancelled = future.cancel(true);

2/7/2023Copyright © 2021, Oracle and/or its affiliates |20

2004: Java 5, java.util.concurrent

2004: Java Util Concurrent

Lock lock = new ReentrantLock();
lock.lock();
try {

System.out.println("Only one thread can execute me!");

} finally {
lock.unlock();

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |21

2004: Java 5, java.util.concurrent

Plus many more concurrent classes:

- Lock, Semaphore, Barrier, CountDownLatch

- BlockingQueue, ConcurrentMap

- CopyOnWriteArrayList

2004: Java Util Concurrent

2/7/2023Copyright © 2021, Oracle and/or its affiliates |22

2011 – 2014 (Java 7, Java 8):

- Fork / Join, parallel Stream

Allows to compute elements in parallel

Two phases:

- fork = splits a task in two sub-tasks

- join = merge the result of two sub-tasks

Uses work stealing to spread the tasks among threads

2011: Fork / Join

2/7/2023Copyright © 2021, Oracle and/or its affiliates |23

2011 – 2014 (Java 7, Java 8):

- CompletionStage, CompletableFuture

Subtype of Future

Asynchronous programming model

Allows to trigger tasks on the outcome of other tasks

User can control which thread executes what task

Exceptions handling

2014: CompletionStage

2/7/2023Copyright © 2021, Oracle and/or its affiliates |24

Once a thread begins to process a task it cannot release it

Either the task completes with a result

Or is completes with an exception

It may be an InterruptedException

One thing stays the same

2/7/2023Copyright © 2021, Oracle and/or its affiliates |25

2022+ (prev. in Java 19)

2023?: Loom!

2/7/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted26

Why Do We Need Concurrency?

2/7/2023Copyright © 2021, Oracle and/or its affiliates |27

Concurrency may be used in two different contexts:

1) Processing in-memory data in parallel, using all the CPU cores

- Each thread uses 100% of your CPU cores

- Threads are mostly not blocking

Concurrency: Computations vs. I/O

2/7/2023Copyright © 2021, Oracle and/or its affiliates |28

Concurrency may be used in two different contexts:

2) Handling numerous blocking requests / responses

HTTP Server 1 request <=|=> 1 thread

DB Server 1 transaction <=|=> 1 thread

Concurrency: Computations vs. I/O

2/7/2023Copyright © 2021, Oracle and/or its affiliates |29

Processing I/O data:

- Each task waits for the data it needs to process

Concurrency for I/O

Preparing the request
Time scale: 10ns

2/7/2023Copyright © 2021, Oracle and/or its affiliates |30

Processing I/O data:

- Each task waits for the data it needs to process

Concurrency for I/O

Waiting for the response
Time scale: 10ms

2/7/2023Copyright © 2021, Oracle and/or its affiliates |31

Processing I/O data:

- Each task waits for the data it needs to process

Concurrency for I/O

Processing the response
Time scale: 10ns

2/7/2023Copyright © 2021, Oracle and/or its affiliates |32

Processing I/O data:

A Thread is idle 99.9999% of the time!

How many threads do you need to keep your CPU busy?

Concurrency for I/O

ms nsns

2/7/2023Copyright © 2021, Oracle and/or its affiliates |33

A thread is not cheap!

- Thread startup time: ~1ms

- Thread memory consumption: 2MB of stack

- Context switching: ~100ms (depends on the OS)

Having 1 million platform threads is not possible!

Concurrency for I/O

2/7/2023Copyright © 2021, Oracle and/or its affiliates |34

CompletionState / CompletableFuture

Asynchronous / Reactive programming

Async / Await (C# or Kotlin)

Mono / Multi (Spring)

Uni / Multi (Quarkus)

Solutions?

2/7/2023Copyright © 2021, Oracle and/or its affiliates |35

Breaking down a request handling into small stages

Then compose them into a pipeline

The code becomes:

- hard to read and write (callback hell)

- hard to debug (call stack?)

- hard to test

- hard to profile

Solutions?

2/7/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted36

Loom to the Rescue

2/7/2023Copyright © 2021, Oracle and/or its affiliates |37

Virtual Thread!

// platform threads
var pthread = new Thread(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.start();
pthread.join();

2/7/2023Copyright © 2021, Oracle and/or its affiliates |38

Virtual Thread!

// virtual threads
var vthread = Thread.startVirtualThread(() -> {
System.out.println("virtual " + Thread.currentThread());

});
vthread.join();

// platform threads
var pthread = Thread.ofPlatform(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.join();

2/7/2023Copyright © 2021, Oracle and/or its affiliates |39

A virtual thread runs on a carrier thread from a Fork-Join pool
(not the common fork join pool)

This pool implements a FIFO queue (instead of a LIFO one)

Virtual Thread!

// platform threads
platform Thread[#14,Thread-0,5,main]

// virtual threads
virtual VirtualThread[#15]/runnable@ForkJoinPool-1-worker-1

2/7/2023Copyright © 2021, Oracle and/or its affiliates |40

Thread Polymorphic Builder

// platform threads
var pthread = Thread.ofPlatform()

.name("platform-", 0)

.start(() -> {
System.out.println("platform " + Thread.currentThread());

});
pthread.join();

// virtual threads
var vthread = Thread.ofVirtual()

.name("virtual-", 0)

.start(() -> {
System.out.println("virtual " + Thread.currentThread());

});
vthread.join();

2/7/2023Copyright © 2021, Oracle and/or its affiliates |41

How many virtual threads can I run?

2/7/2023Copyright © 2021, Oracle and/or its affiliates |42

Platform/OS thread (starts in ms)

- Creates a 2MB stack upfront
- System call to ask the OS to schedule the thread

Virtual thread (starts in μs)

- Grow and shrink the stack dynamically
- Use a specific fork-join pool of platform threads (carrier

threads)
- One platform thread per core

Running a Thread

2/7/2023Copyright © 2021, Oracle and/or its affiliates |43

How does it work under the hood?

2/7/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted44

Continuation

2/7/2023Copyright © 2021, Oracle and/or its affiliates |45

Example of Thread.sleep():

Calls Contination.yield()

Where Does the Magic Come From?

@ChangesCurrentThread
private boolean yieldContinuation() {

boolean notifyJvmti = notifyJvmtiEvents;
// unmount
if (notifyJvmti) notifyJvmtiUnmountBegin(false);
unmount();
try {

return Continuation.yield(VTHREAD_SCOPE);
} finally {

// re-mount
mount();
if (notifyJvmti) notifyJvmtiMountEnd(false);

}
}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |46

yield() copies the stack to the heap

Continuation.yield()

heapstack

start()

Platform thread 1

sleep()

2/7/2023Copyright © 2021, Oracle and/or its affiliates |47

yield() copies the stack to the heap

Continuation.yield()

heapstack

start()

Platform thread 1

2/7/2023Copyright © 2021, Oracle and/or its affiliates |48

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

Continuation.run()

stack

start()

Platform thread 1

heap

2/7/2023Copyright © 2021, Oracle and/or its affiliates |49

run() copies from the heap to another stack
(optimization: only copies the topmost stack frames)

Continuation.run()

stack

start()

Platform thread 1

stack

Platform thread 2

heap

2/7/2023Copyright © 2021, Oracle and/or its affiliates |50

jdk.internal.vm.Continuation

var scope = new ContinuationScope("hello");
var continuation = new Continuation(scope, () -> {

System.out.println("C1");
Continuation.yield(scope);
System.out.println("C2");
Continuation.yield(scope);
System.out.println("C3");

});
System.out.println("start");
continuation.run();
System.out.println("came back");
continuation.run();
System.out.println("back again");
continuation.run();
System.out.println("back again again");

Execution:
start
C1
came back
C2
back again
C3
back again again

2/7/2023Copyright © 2021, Oracle and/or its affiliates |51

Sometimes virtual threads are pinned to their carrier thread

Native code that does an upcall to Java may use an address on
stack

 the stack frames can not be copied

There Are Cases Where It Does Not Work

2/7/2023Copyright © 2021, Oracle and/or its affiliates |52

A Platform Thread is a thin wrapper on an OS Thread

A Virtual Thread is not tied to a particular OS Thread

A Virtual Thread only consumes an OS Thread

when it performs calculations on the CPU

Running a Virtual Thread

2/7/2023Copyright © 2021, Oracle and/or its affiliates |53

Creating a virtual thread is cheap

Blocking a virtual thread is cheap

Pooling virtual threads is useless

2/7/2023Copyright © 2021, Oracle and/or its affiliates |54

Most of the code of the virtual threads scheduling is written in
Java in the JDK (jdk.internal.vm.Continuation)

Written in C in the JVM:

- Copy of the stack frames back and forth

- GCs modified to find references in stack on heap

Loom is not Implemented « By the JVM »

2/7/2023Copyright © 2021, Oracle and/or its affiliates |55

All blocking codes are changed to

- Check if current thread is a virtual thread

- If it is, instead of blocking:
- Register a handler that will be called when the OS is

ready (using NIO)

- Call Continuation.yield()

- When the handler is called, find a carrier thread and call
Continuation.start()

In the JDK

2/7/2023Copyright © 2021, Oracle and/or its affiliates |56

Sometimes virtual threads are pinned to their carrier thread

Synchronized block are written in assembly and uses an address
on the stack

 the stack frames can not be copied

Prefer ReentrantLock over synchronized()

There Are Cases Where It Does Not Work

2/7/2023Copyright © 2021, Oracle and/or its affiliates |57

Java 13

- JEP 353 Reimplement the Legacy Socket API

Java 14

- JEP 373 Reimplement the Legacy Datagram Socket API

- JEP 374 Deprecate and Disable Biased Locking

Stealth Rewrite of the JDK for Loom

2/7/2023Copyright © 2021, Oracle and/or its affiliates |58

Java 18

- JEP 416 Reimplement Core Reflection with Method Handles

- JEP 418 (Internet-Address Resolution SPI) in JDK 18 defined a
service-provider interface for host name and address lookup.
This will allow third-party libraries to implement alternative
java.net.InetAddress resolvers that do not pin threads during
host lookup

Stealth Rewrite of the JDK for Loom

2/7/2023Copyright © 2021, Oracle and/or its affiliates |59

The JDK creates as many virtual threads as the user want

- Mount a virtual thread to an available carrier thread when
starting

- If blocking, unmount the current virtual thread and mount
another virtual thread

Loom Idea: Under the Hood

Coffee (or whatever)
break!

2/7/2023Copyright © 2021, Oracle and/or its affiliates | Confidential: Internal/Restricted/Highly Restricted61

Structured Concurrency

2/7/2023Copyright © 2021, Oracle and/or its affiliates |62

Because thread dumps work well with several thousands of
threads, not millions of threads

Not to talk about what can happen in your IDE…

You need to structure these threads

Why Do You Need Structured Concurrency?

2/7/2023Copyright © 2021, Oracle and/or its affiliates |63

Welcome to Loom Scopes

- It’s a pool of threads, that creates virtual threads on demand

- Once a task is done, the thread dies

Structured Task Scope

2/7/2023Copyright © 2021, Oracle and/or its affiliates |64

A travel agency sells travels. On the response page, it wants to
display:

- the quotation

- the weather forecast for the destination

The Travel Agency Example

2/7/2023Copyright © 2021, Oracle and/or its affiliates |65

The Travel Agency Example

Quotation

Weather Forecast
Travel Page

2/7/2023Copyright © 2021, Oracle and/or its affiliates |66

CompletableFuture Based Travel Agency

var quotationCF =
CompletableFuture.supplyAsync(() -> getQuotation());

var weatherCF =
CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF

.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);

})
.thenCompose(

quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(

weather ->
buildPage(quotation, weather)));

Quotation Server A

2/7/2023Copyright © 2021, Oracle and/or its affiliates |67

The Travel Agency Example

Quotation Server B

Quotation Server C

Weather Forecast Server A

Weather Forecast Server B

Weather Forecast Server C

Travel
Agency

2/7/2023Copyright © 2021, Oracle and/or its affiliates |68

It needs to be closed (try with resources FTW!)

It creates virtual threads on demand

Pattern:

- Launch tasks

- Call join()

- Get the results

Structured Scope

2/7/2023Copyright © 2021, Oracle and/or its affiliates |69

A StructuredTaskScope object looks like an
ExecutorService

- It takes tasks and run then

- And returns Future

But:

- An executor lives with your application

- A task scope lives with your tasks

StructuredTaskScope

2/7/2023Copyright © 2021, Oracle and/or its affiliates |70

- ShutdownOnSuccess

- ShutdownOnFailure

Can be extended to implement specific needs

StructuredTaskScope

2/7/2023Copyright © 2021, Oracle and/or its affiliates |71

Allows you to implement your own logic and error handling

handleComplete(Future<>) is the method you need to
override

Extending StructuredTaskScope

2/7/2023Copyright © 2021, Oracle and/or its affiliates |72

CompletableFuture Based Travel Agency

var quotationCF =
CompletableFuture.supplyAsync(() -> getQuotation());

var weatherCF =
CompletableFuture.supplyAsync(() -> getWeather());

CompletableFuture<Page> travelPageCF =
quotationCF

.exceptionally(t -> {
weatherCF.cancel(true);
throw new RuntimeException(t);

})
.thenCompose(

quotation -> weatherCF
// .completeOnTimeout(Weather.UNKNOWN, 100, MILLISECONDS)
.exceptionally(e -> Weather.UNKNOWN)
.thenApply(

weather ->
buildPage(quotation, weather)));

2/7/2023Copyright © 2021, Oracle and/or its affiliates |73

Stuctured Concurrency Based Travel Agency

try (var scope = new WeatherScope()) {

scope.fork(() -> readWeatherFromA());
scope.fork(() -> readWeatherFromB());
scope.fork(() -> readWeatherFromC();

scope.join();

Weather firstWeather = scope.getFirstWeather();
return firstWeather;

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |74

Stuctured Concurrency Based Travel Agency

try (var scope = new QuotationScope()) {

scope.fork(() -> readQuotationFromA());
scope.fork(() -> readQuotationFromB());
scope.fork(() -> readQuotationFromC();

scope.join();

Quotation bestQuotation = scope.getBestQuotation();
return bestQuotation;

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |75

Stuctured Concurrency Based Travel Agency

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |76

Stuctured Concurrency Based Travel Agency

protected void handleComplete(Future<Quotation> future) {

switch (future.state()) {
case RUNNING -> throw new IllegalStateException("Ooops");
case SUCCESS -> this.quotations.add(future.resultNow());
case FAILED -> this.exceptions.add(future.exceptionNow());
case CANCELLED -> { }

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |77

Stuctured Concurrency Based Travel Agency

public Quotation bestQuotation() {
return this.quotations.stream()

.min(Comparator.comparing(Quotation::quotation))

.orElseThrow(this::exceptions);
}

public QuotationException exceptions() {
QuotationException exception = new QuotationException();
this.exceptions.forEach(exception::addSuppressed);
return exception;

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |78

try (var scope = new TravelPageScope()) {

scope.fork(() -> getFirstWeather());
scope.fork(() -> getBestQuotation());

scope.join();

TravelPage page = scope.buildTravelPage();
return page;

}

2/7/2023Copyright © 2021, Oracle and/or its affiliates |79

Stack Trace, ThreadDumps?

> jcmd <pid> Thread.dump_to_file –format-json <filename.json>

2/7/2023Copyright © 2021, Oracle and/or its affiliates |80

ThreadLocal are made to pass some information

Without relying to method parameters!

ThreadLocal?

2/7/2023Copyright © 2021, Oracle and/or its affiliates |81

ThreadLocal is a variable bound to a thread

That can be read through this thread

ThreadLocal?

ThreadLocal<String> threadLocal = new ThreadLocal<>();

threadLocal.set("KEY_1");

System.out.println(threadLocal.get()); // KEY_1

new Thread(
() -> System.out.println(threadLocal.get())

).start(); // null

2/7/2023Copyright © 2021, Oracle and/or its affiliates |82

1) Thread local variables are stored in a map
And are mutable!

2) Creating a new thread copies the map from the current
thread

3) You know that there is a remove() method on
ThreadLocal?

ThreadLocal under the hood

2/7/2023Copyright © 2021, Oracle and/or its affiliates |83

Virtual Threads support
ThreadLocal variables

but you can do better!

2/7/2023Copyright © 2021, Oracle and/or its affiliates |84

Virtual Threads support
ThreadLocal variables

but you can do better!

2/7/2023Copyright © 2021, Oracle and/or its affiliates |85

ScopedValues are non-modifiable

They are not bound to a particular thread

Welcome to ScopedValue

ScopedValue<String> key = new ScopedValue.newInstance();

ScopedValue.where(key, "KEY_1")
.run(() -> doSomethingSmart()));

ScopedValue.where(key, "KEY_2")
.run(() -> doSomethingSmart())
.run(() -> soSomethingSmarter());

Loom is Great!

	Pillar Title slides
	Diapositive 1 Loom: Virtual Threads and StructuredConcurrency and ScopedValues in the JDK 20
	Diapositive 2
	Diapositive 3
	Diapositive 4 Tune in!
	Diapositive 5
	Diapositive 6
	Diapositive 7 Loom is a Work in Progress
	Diapositive 8 Loom is a Work in Progress
	Diapositive 9 Loom is a Work in Progress
	Diapositive 10 Loom is a Work in Progress
	Diapositive 11 Loom is a Work in Progress
	Diapositive 12 Loom is a Work in Progress
	Diapositive 13 Adoption ?
	Diapositive 14 It all Started with a Runnable…
	Diapositive 15 1995: Threads and Runnables
	Diapositive 16 1995: Threads and Runnables
	Diapositive 17 2004: Java Util Concurrent
	Diapositive 18 2004: Java Util Concurrent
	Diapositive 19 2004: Java Util Concurrent
	Diapositive 20 2004: Java Util Concurrent
	Diapositive 21 2004: Java Util Concurrent
	Diapositive 22 2011: Fork / Join
	Diapositive 23 2014: CompletionStage
	Diapositive 24 One thing stays the same
	Diapositive 25 2023?: Loom!
	Diapositive 26 Why Do We Need Concurrency?
	Diapositive 27 Concurrency: Computations vs. I/O
	Diapositive 28 Concurrency: Computations vs. I/O
	Diapositive 29 Concurrency for I/O
	Diapositive 30 Concurrency for I/O
	Diapositive 31 Concurrency for I/O
	Diapositive 32 Concurrency for I/O
	Diapositive 33 Concurrency for I/O
	Diapositive 34 Solutions?
	Diapositive 35 Solutions?
	Diapositive 36 Loom to the Rescue
	Diapositive 37 Virtual Thread!
	Diapositive 38 Virtual Thread!
	Diapositive 39 Virtual Thread!
	Diapositive 40 Thread Polymorphic Builder
	Diapositive 41
	Diapositive 42 Running a Thread
	Diapositive 43
	Diapositive 44 Continuation
	Diapositive 45 Where Does the Magic Come From?
	Diapositive 46 Continuation.yield()
	Diapositive 47 Continuation.yield()
	Diapositive 48 Continuation.run()
	Diapositive 49 Continuation.run()
	Diapositive 50 jdk.internal.vm.Continuation
	Diapositive 51 There Are Cases Where It Does Not Work
	Diapositive 52 Running a Virtual Thread
	Diapositive 53
	Diapositive 54 Loom is not Implemented « By the JVM »
	Diapositive 55 In the JDK
	Diapositive 56 There Are Cases Where It Does Not Work
	Diapositive 57 Stealth Rewrite of the JDK for Loom
	Diapositive 58 Stealth Rewrite of the JDK for Loom
	Diapositive 59 Loom Idea: Under the Hood
	Diapositive 60
	Diapositive 61 Structured Concurrency
	Diapositive 62 Why Do You Need Structured Concurrency?
	Diapositive 63 Structured Task Scope
	Diapositive 64 The Travel Agency Example
	Diapositive 65 The Travel Agency Example
	Diapositive 66 CompletableFuture Based Travel Agency
	Diapositive 67 The Travel Agency Example
	Diapositive 68 Structured Scope
	Diapositive 69 StructuredTaskScope
	Diapositive 70 StructuredTaskScope
	Diapositive 71 Extending StructuredTaskScope
	Diapositive 72 CompletableFuture Based Travel Agency
	Diapositive 73 Stuctured Concurrency Based Travel Agency
	Diapositive 74 Stuctured Concurrency Based Travel Agency
	Diapositive 75 Stuctured Concurrency Based Travel Agency
	Diapositive 76 Stuctured Concurrency Based Travel Agency
	Diapositive 77 Stuctured Concurrency Based Travel Agency
	Diapositive 78
	Diapositive 79 Stack Trace, ThreadDumps?
	Diapositive 80 ThreadLocal?
	Diapositive 81 ThreadLocal?
	Diapositive 82 ThreadLocal under the hood
	Diapositive 83
	Diapositive 84
	Diapositive 85 Welcome to ScopedValue
	Diapositive 86

