
DevDiv Java Engineering Group

JVM Ergonomics for
Containers and
Kubernetes
Understand impact of resource constraints in the JVM
Martijn Verburg – Principal SWE Group Manager - @karianna

With many thanks to The Diabolical PM Bruno Borges!
Extra Guidance from Monica Beckwith, Kirk Pepperdine & Ben Evans

Microsoft Developer Division
Java Engineering Group (JEG), May 2022

DevDiv Java Engineering Group

Agenda
JVM inside Containers and on Kubernetes: what you must know!

• Context
• Java At Microsoft, Hardware Resources and Cloud Compute

• JVM Ergonomics
• Understand the default values of the JVM
• How the amount of memory and CPU impacts selection of Garbage Collector

• JVM Garbage Collectors
• Recommendations for better starting points in Cloud native applications
• How to tune GCs

• Java on Kubernetes
• Recommended starting points, Topologies

• Conclusion

Java at Microsoft

DevDiv Java Engineering Group

Java is widely used across Microsoft

Minecraft
Thousands of servers built in Java and millions of
players on the very popular Java Edition (Java 17+)

Android
50+ apps published by Microsoft in
Google Play Store

2,000,000+ JVMs in production*
LinkedIn
2000+ Java microservices in
production, Java 11+

Azure
Azure internal systems and
infrastructure, Big Data etc.

Yammer
Back-end implemented in Java

*Internal usage; does not include customer workloads, not all in containers (yet)

Bing and MSN
Infrastructure with Java-based big
data services

DevDiv Java Engineering Group

Cloud Compute and
Climate Change

DevDiv Java Engineering Group

Hardware Resources
and Cloud Compute

DevDiv Java Engineering Group

Data Centres in
the Cloud Age

• Each host has limited resources
• Metal as a Service (MaaS) is rare
• Infrastructure as a Service (IaaS)
• Typically, VMs and/or containers

• Understand the SKU you’re on!

DevDiv Java Engineering Group

DevDiv Java Engineering Group

Containers via Host O/S’s and VMs
This is how we started with containers – note each layer takes some resource

• Bare Metal Host (& Host O/S)
• Only has so much CPU, RAM, HDD and Network I/O capacity!
• Often Linux, sometimes this is replaced by a Type-1 Hypervisor

• Hypervisors
• Enables creation and maintenance of VMs, uses a small amount of resource to do so.
• Type-1 Runs on bare metal, Type-2 runs on a host O/S

• Virtual Machines (VMs)
• This is the IaaS unit SKU you usually get on cloud.

• Containers
• Hello Docker (for most people) and K8s to orchestrate

DevDiv Java Engineering Group

DevDiv Java Engineering Group

Containers via Container Engines
A quick reminder

• Bare Metal Host (& Host O/S)
• Only has so much CPU, RAM, HDD and Network I/O capacity!

• Container Engines
• Replaces Host O/S’s and Hypervisors in most cases. Serves up containers only.

• Containers
• Hello Docker (for most people) and K8s to orchestrate

DevDiv Java Engineering Group

Calculate what you need with headroom
Seriously, 64GB of RAM will not give you 16x8GB VMs that work, stop it.

JVM Ergonomics

Survey Summary (150 ppl)
• Most devs are deploying JVM

workloads in containers with:
• Up to 4 CPUs (65%)
• Up to 4 GB RAM (65%)
• I/O intensive (50%)

• Overall
• Up to 2 GB (48%)
• Up to 3 CPUs (50%)

65% of ppl

DevDiv Java Engineering Group

JVM Ergonomics

• New Relic (Azure Partner)
• 10+ Million of prod JVMs analysed
• Majority with 1 CPU
• Majority with 1GB or less RAM
• Majority with GC not configured

• Typical ‘fixes’ to Perf issues:
• Increase heap size
• More replicas
• Migration to another stack

• Ultimately, increased COGS

DevDiv Java Engineering Group

JVM Ergonomics
Default settings when no GC is specified.

• HotSpot JVM / OpenJDK
• Java 11 or later

• SerialGC or G1GC
• Java 8

• SerialGC or ParallelGC

• Default GC
• Serial GC if 1791MB or less

memory available.

• Otherwise, G1GC.

DevDiv Java Engineering Group

JVM Ergonomics Demo

JVM Garbage Collectors

DevDiv Java Engineering Group

Garbage Collectors
Recommendations

Serial Parallel G1 Z Shenandoah
Number of cores 1 2+ 2+ 2+ 2+

Multi-threaded No Yes Yes Yes Yes

Java Heap size <4GBytes <4Gbytes >4GBytes >4GBytes >4GBytes

Pause Yes Yes Yes Yes (<1ms) Yes (<10ms)

Overhead Minimal Minimal Moderate Moderate+ Moderate++

Tail-latency Effect High High High Low Moderate

JDK version All All JDK 8+ JDK 17+ JDK 11+

Best for Single core, small
heaps

Multi-core small
heaps.

Batch jobs, with any
heap size.

Responsive in
medium to large
heaps (request-
response/DB
interactions)

responsive in medium to
large heaps (request-
response/DB
interactions)

responsive in
medium to large
heaps (request-
response/DB
interactions)

DevDiv Java Engineering Group

What to know

• Poorly tuned GC leads to
• High pause times
• High % of time spent pausing
• Starvation of threads
• OutOfMemoryError (OOME)

• Tuning GC is worth
• Performance gains lead to Cost savings

• Setting Heap size is not enough
• Understanding the workload is key
• Select appropriate Garbage Collector
• Enough CPUs
• Performance requirements and SLAs

• The JVM Heap
• Contiguous block of memory
• Entire space is reserved
• Only some space is allocated
• Broken up into different areas or regions

• Object Creation / Removal
• Objects are created by application

(mutator) threads
• Objects are removed or relocated by

Garbage Collection

DevDiv Java Engineering Group

Heap Size Configuration

• Manually configure Heap

• -Xmx
• Set value in MB: 256m
• Set value in GB: 2g
• Great for well-sized workloads

• -XX:MaxRAMPercentage
• Set value in percentage: 75
• Great for workloads to be scaled

along container memory limits

• Default Ergonomics (Heap)
• Inside containers is 1/4 available memory.
• Outside containers is 1/64 available memory.

• Recommended starting point
• Servers

• Set to whatever the application needs
• Containers

• Set to whatever the application needs but
75% of container memory limit
• You can go higher, the larger your heap.

DevDiv Java Engineering Group

“[GC] Tuning is basically trying to
optimize this [object] moving to
‘move as little as possible, as late as
possible so not disturb the flow.’”

Monica Beckwith
Principal Software Engineer
Microsoft Java Engineering Group

Watch Monica’s Tuning and Optimizing Java
Garbage Collection (infoq.com)

https://www.infoq.com/interviews/beckwith-garbage-collection/

JVM Ergonomics and GCs – Summary

•G1GC only when 2+ available processors and 1792+ MB available memory – regardless of heap size.
•SerialGC otherwise.

Java 11+ - OpenJDK HotSpot Ergonomics will use, by default, either SerialGC or G1GC

•Up to 4GB, ParallelGC performs better as a throughput GC.
•Between 2-4GB, ParallelGC may still perform better for throughput, but G1GC could be considered.
•ParallelGC still triggers Stop the World (StW), impacting in latency on tail performance.

ParallelGC in general outperforms G1GC for smaller heaps

•Default ergonomics will allocate 1/4 of available memory when inside containers, and 1/64 if not in container.
•Make sure a heap size is defined, either with -Xmx or with -XX:MaxRAMPercentage. Allocate at least 75%.

Heap size not being properly dimensioned for containers by Ergonomics

Java on Kubernetes

 X

 X

DevDiv Java Engineering Group

Kubernetes CPU Throttling
How it impacts the JVM

• CPU requests on Kubernetes are for CPU time
• “1000m” does NOT mean a single vCPU, or core.
• “1000m” means the application can consume a full CPU cycle per period.
• “1000m” allows an application with multiple threads to run in parallel.

• When all threads combined consume “1000m” in CPU time, the application is throttled.
Example
• Thread A spends 400m; Thread B spends 500m. Thread C spends 100m.
• App now must wait 500m for the next cycle.

• Java applications are, in general, multi-threaded
• Concurrent GCs will have their own threads.
• Web apps and REST/gRPC microservices will have their own threads.
• Database Connection Pools will have their own threads.

DevDiv Java Engineering Group

CPU 1

CPU 2

CPU 3

CPU 4

CPU Throttling
How the JVM is throttled on Kubernetes

Java Virtual Machine

Garbage
Collector

GC
Thread

GC
Thread

GC
Thread

Application

HTTP
Request

HTTP
Request

HTTP
Request

HTTP
Request

HTTP
Request

HTTP
Request

• Each request: 200m
CPU Limit: 1000m

• Remaining CPU time: 200m

Remaining CFS Period: 100ms

• GC Work (total): 200m
80ms

• Remaining CPU time: 0m 60ms

Application throttled for 60ms

DevDiv Java Engineering Group

JVM on Kubernetes

• Trick the JVM
• Limit may be 1000m, but you may still tell

the JVM it can use 2 or more processors!

• Use this flag:
-XX:ActiveProcessorCount

• JVM Available Processors
• Up to 1000m: 1 proc
• 1001-2000m: 2 procs
• 2001-3000m: 3 procs
• …

DevDiv Java Engineering Group

Kubernetes: Better Starting Points
Recommendations to follow instead of JVM Ergonomics

CPU Limits

Up to 1000m

Not recommended <2GB or >4GB

ParallelGC 2 to 4GB

2000m

ParallelGC Up to 4GB

G1GC More than 4GB

4000m

G1GC More than 4GB

ZGC, Shenandoah 4GB to 32GB

ZGC 32GB or more

With 1000m or less, set:
--XX:ActiveProcessorCount=2

Memory Limits

For small JVM Heap set to 75%
then increase % as Heap increases

DevDiv Java Engineering Group

Benchmark
Latency: lower is better. Throughput: higher is better.

Latency

Throughout

DevDiv Java Engineering Group

Azure Kubernetes Cluster
Short but wide – 6 x 4 = 24 vCPUs

VM 1

vCPU

vCPU

vCPU

vCPU

VM 2

vCPU

vCPU

vCPU

vCPU

VM 3

vCPU

vCPU

vCPU

vCPU

VM 4 VM 5 VM 6

Control

• D4 v3 VM $0.192/hour
• 4 vCPU
• 16 GB

• JVM
• 1 vCPU
• 2 GB RAM

• Garbage Collector selected by Ergonomics:
• Serial GC

• Concurrent/Parallel GCs won’t be effective
• Constant CPU Throttling on each JVM
• Constant Stop-the-World by GC
• High latency, low throughput

JVM

JVM

JVM

Control

JVM

JVM

JVM

Control

JVM

JVM

JVM

vCPU

vCPU

vCPU

vCPU

Control

JVM

JVM

JVM

vCPU

vCPU

vCPU

vCPU

JVM

JVM

JVM

JVM

vCPU

vCPU

vCPU

vCPU

JVM

JVM

JVM

JVM

• Total Resources Consumed
• 18 JVMs replicas
• 18 vCPUs
• 36 GB of RAM (of 96)

Estimate: $840.96

DevDiv Java Engineering Group

Azure Kubernetes Cluster
Tall but narrow – 3 x 8 = 24 vCPUs

VM 1 VM 2 VM 3

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

vCPU

JVM JVM JVM

• D8 v3 VM $0.384/hour
• 8 vCPUs
• 32 GB

• JVM
• 8 GB RAM
• 4 vCPUs

• Total Resources Consumed
• 12 vCPUs
• 24 GB of RAM (of 96)

• Garbage Collector (recommended):
• G1GC

• Benefits
• CPU Throttling unlikely
• Lower latency, higher throughputvCPU

vCPU

vCPU

vCPU

vCPU

vCPU

Control Control Control

Savings:
- 9 vCPUs on standby
- 72 GB of RAM on standby

Estimate: $840.96 (same cost)

DevDiv Java Engineering Group

A/B Routing Multiple Topologies
Monitor the topologies for resource consumption, latency, and throughput.

Load Balancer

Topology A
Smaller JVMs

Multiple replicas

Topology B
Larger JVMs

Lesser replicas

DevDiv Java Engineering Group

Steps to Address Perf Issues
Optimize runtime for the workload

• Understand Your Tech Stack
• Understand how the runtime responds to workloads
• Understand JVM Ergonomics
• Understand JVM Garbage Collectors

• Observe and Analyze
• Monitor with Azure App Insights and other APM solutions
• Analyze JVM data with JDK Flight Recorder (JFR) and Microsoft JFR Streaming
• Analyze Garbage Collection logs with GC analyzers and Microsoft GCToolKit

• Reorganize existing resources
• Consume the same amount of resources
• Increase the performance
• Maintain or reduce the cost

https://github.com/microsoft/jfr-streaming
https://github.com/microsoft/gctoolkit

DevDiv Java Engineering Group

Conclusion
Java on Kubernetes scaling

• Different workloads may need different topologies
• Scaling out with more replicas is not a silver bullet for performance increase

• Give more resources to JVMs in the beginning
• Lesser replicas, more CPU/memory

• Start with Parallel GC for smaller heaps
• Avoid JVM default ergonomics
• Ensure you know which GC is being used

• Increase performance by understanding bottlenecks
• Analyse JFR data
• Analyse GC logs

• Scale out, and up, as needed

DevDiv Java Engineering Group

https://www.manning.com/books/the-well-grounded-
java-developer-second-edition

https://docs.microsoft.com/en-
us/azure/developer/java/containers/overview

Learn more in Depth!

The End
@javaatmicrosoft

https://docs.microsoft.com/java

Microsoft Developer Division

Java Engineering Group (JEG)

