
Copyright © 2019 Oracle and/or its affiliates.

Jfokus 2020
HotSpot Handshaking

JPG – HotSpot Runtime

February 3, 2020
robbin.ehn@oracle.com

Robbin Ehn

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2019 Oracle and/or its affiliates.

http://www.oracle.com/investor

Copyright © 2019 Oracle and/or its affiliates.

Intro

• Low latency GC’s

• Runtime

• Handshake

• Effective

• Limited

Handshakes - Latency and throughtput?

• Safepoints

• Handshakes

• Implementation

• Use cases

• Future use cases

• Additional functionality

• Real data

Copyright © 2019 Oracle and/or its affiliates.

HotSpot Handshaking

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

• Mutate virtual machine.

• Java thread (mutator) state.

• Common states:
• Blocked

• Native

• Java

• VM

What is safe?

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

VM

Java

Native

Blocked

Unsafe Safe

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

• VM.
• Transitions

• Java
• Poll

• Transitions

• Elide into native.

• Native
• Continue to execute

• Blocked
• Stuck

States

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

• VM Operation

• VM Queue.

• VM Thread, dispatch thread:
• Stops

• Accounts

• Executes

• Re-starts

Basic execution

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

Thread A Thread B Thread C

Thread D Thread E

Safepoint

IDLE CPU

CPU1

CPU2

Synchronizing

= Poll

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

Thread A

Thread C

Safepoint

IDLE CPU

CPU1

CPU2

Restarting

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

• Simple model

• Global switch, constant time arming

• Single state

• Really safe

• Relative fast
• ~200 us to reach a safepoint

• ~200 us to reach full CPU utilization after safepoint

Pros

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

• Application intrusive

• Inter-thread dependency

• Unutilized CPU

• Operation without inter-thread dependency

Cons

Copyright © 2019 Oracle and/or its affiliates.

Safepoints

// Generated poll in JIT
test rax, fixed-poll-adr

// Non trapping for non JIT code
bool SafepointMechanism::global_poll() {

return (SafepointSynchronize::_state !=
SafepointSynchronize::_not_synchronized);

}

// Arming
_state = _synchronizing;
mprotect(fixed-poll-adr, PAGE, MEM_PROT_NONE);

// Disarming
mprotect(fixed-poll-adr, PAGE, MEM_PROT_READ);
_state = _not_synchronized;

Polling

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

• Per thread safepoint

• Latency friendly

• Thread owned/local resources
• Stack

• Biased lock

• Asynchronous exception

• Barrier
• Un-publish

• Handshake

• Not visible

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

• VM Thread and queue

• VM Operation, non-safepoint

• Operation execution
• Per thread installation of operation

• Assign operation

• Arms

• Self (Java thread) processing

• VM Thread processing

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

• Self processing
• JIT poll

• Transition

• In slow path
• Safepoint

• Process handshake

• VM Thread processing
• Safe Java threads

• Stopped from entering unsafe state

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

Thread A Thread A
Hand-
shake

Context
switch

Thread B
Hand-
shake

Thread B

• One CPU

• Serialized

• Time-slice

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

• ‘Unnoticeable’

• Individual threads

• Effectively barrier
• Fence

• No dependencies

• CPU utilization

Pros

Copyright © 2019 Oracle and/or its affiliates.

Handshakes

• Arming

• Complex states

• Limited use-cases

• Slow
• ~20ms

Cons

Copyright © 2019 Oracle and/or its affiliates.

Implementation

• Unique poll thread

• JavaThread* register

• Per thread polling page pointer

• Bad (unreadable) and good (readable)

• JIT, indirect load

• Non-JIT, branch-based

Copyright © 2019 Oracle and/or its affiliates.

Implementation

R15
BAD

GOOD

JavaThread
Native heap

Polling page pointer

Copyright © 2019 Oracle and/or its affiliates.

Implementation

// Generated poll in JIT
mov poll-offset + thread_reg, reg
test rax, reg

// Non trapping for non JIT code
bool SafepointMechanism::local_poll_armed(JavaThread* thread) {
return thread->get_polling_word() & poll_bit();

}

// Arming one thread
thread->set_polling_page(poll_armed_value())

// Disarming one thread
thread->set_polling_page(poll_disarmed_value())

// Arming/disarming many threads
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *cur = jtiwh.next();) {
SafepointMechanism::arm_local_poll/disarm_local_poll(cur);

}

Copyright © 2019 Oracle and/or its affiliates.

Use cases

• ZRendezvousClosure

• ShenandoahUnloadRendezvousClosure

• ZMarkFlushAndFreeStacksClosure

• InstallAsyncExceptionClosure

• RevokeOneBias

• DeoptimizeMarkedClosure

• NMethodMarkingClosure

Copyright © 2019 Oracle and/or its affiliates.

• Barrier handshake, no-op

• Stale metadata and nmethods synchronization
• No polls while using metadata/nmethods

1. Unpublish

2. Handshake

3. Free

• ZRendezvousClosure
• Dead weak refs resurrection synchronization

ZRendezvousClosure
ShenandoahUnloadRendezvousClosure

Use cases

Copyright © 2019 Oracle and/or its affiliates.

• Access thread local resource

• Flush per thread mark stacks
• Available for concurrent GC work

• Free per thread stacks

ZMarkFlushAndFreeStacksClosure

Use cases

Copyright © 2019 Oracle and/or its affiliates.

Use cases

• Access to thread local resource

• Asynchronous exception

• Thread.stop()

• ThreadDeath exception

InstallAsyncExceptionClosure

Copyright © 2019 Oracle and/or its affiliates.

Use cases

• Thread owned resource

• Locked object

• Object points to a thread

• BasicLock -> Inflate -> Monitor

• Monitor handles contended locks

RevokeOneBias

Copyright © 2019 Oracle and/or its affiliates.

Use cases

• Access to thread local resource

• Java stack

• nmethods marked for deoptimize
• Classloading

• Class redefinition

• Invoke dynamic

• scan all stacks

• mark frames for deoptimize

DeoptimizeMarkedClosure

Copyright © 2019 Oracle and/or its affiliates.

Use cases

• Access to thread local resource

• Java stack

• Current nmethods on stack

NMethodMarkingClosure

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Suspend flag

• JVMTI

• Monitor deflation

• G1 StoreLoad barrier removal

• ZGC Concurrent stack scanning

• Safepoint via handshakes

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Per thread

• Only checked in transition

• Overlapping functionality, but much less flexible

• Use-cases
• Suspend/resume

• Pending asynchronous exception (not same as installation)

• Lazy critical native

• JFR native sampling

Suspend flags

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Lacking inter-thread dependencies

• Safepoint

• Suspend/resume

• Un-intrusive stack traces

JVMTI

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Contended object

• Monitor

• Address installed in markword

• Deflate
• Remove monitor address from markword

• ABA, Monitor address resuse/free

Monitor deflation

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• StoreLoad in G1 post-write barrier

• Dirty cards

• Concurrent refinement, cleaning card(s)

• Handshaking a thread implies StoreLoad fence

G1 StoreLoad barrier removal

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Concurrent stack scanning

• Require branch-based polling

ZGC Stack watermark barrier

Copyright © 2019 Oracle and/or its affiliates.

Future use cases

• Simplifies slow path

• Simplifies VM thread operation execution

• Preserve ordering

Safepoints via handshakes

Copyright © 2019 Oracle and/or its affiliates.

Additional functionality

• Direct handshakes, thread to thread

• Asynchronous handshakes

• Branch based polling

Copyright © 2019 Oracle and/or its affiliates.

Additional functionality

• No VM thread hand-over

• Single handshake, no latency improvement

• Multiple handshake
• Greatly parallelized

• Throughput

• Latency

• A->B while C->D

Direct handshakes

Copyright © 2019 Oracle and/or its affiliates.

Additional functionality

• Only target thread executed

• Per thread queue
• Safepoint via handshake preserve ordering

• Suspend flag

Asynchronous handshake

Copyright © 2019 Oracle and/or its affiliates.

Additional functionality

• Selective polling

• Stack watermark barrier
• Concurrent stack-scanning

• Asynchronous exception

Branch based polling

Copyright © 2019 Oracle and/or its affiliates.

Real data
A ZGC safepoint

|CPU0|CPU1|CPU2|CPU3| Time
| J5 | ZD | J3 | J2 | 0 us
| J5 |*VT | J3 | J2 | 55 us
| J5 |*J1 | J3 | J2 | 86 us
| J5 |*. | J3 | J2 | 110 us
| J5 | . |*. | J2 | 110 us
|*. | . | . | J2 | 118 us
| . | . | . |*. | 129 us
| . |*VT | . | . | 151 us
|SAFEPOINT, runtime/gc workers
| . | . |*VT | . | 722 us
| . |*J1 | VT | . | 747 us
| . |*J4 | VT | . | 759 us
| . |*J1 | VT | . | 768 us
| . | J1 | VT |*J2 | 802 us
| . |*ZD | VT | J2 | 811 us
| . | ZD |*J3 | J2 | 816 us
|*J5 | ZD | J3 | J2 | 827 us

JX = JavaThread X (green)
ZD = ZDriver (blue)
VT = VM Thread (red)

1. ZDriver initiates safepoint in CPU lane 1
2. VM Thread begins safepoint
3. VM Thread goes off-proc (for quicker stoppage)
4. Safepoint operation execution
5. VM Thread ends safepoint (starts the JavaThreads)
6. Notify ZDriver that the requested safepoint is completed

Copyright © 2019 Oracle and/or its affiliates.

Real data
A ZGC handshake

|CPU0|CPU1|CPU2|CPU3| Time
|*J2 | J4 | J1 | ZW | 0 us
|*VT | J4 | J1 | ZW | 11 us
| VT | J4 | J1 |*J3 | 14 us
|*J2 | J4 | J1 | J3 | 12970 us
|*VT | J4 | J1 | J3 | 25965 us
| VT | J4 | J1 |*ZW | 25995 us
|*J2 | J4 | J1 | ZW | 25998 us

JX = JavaThread X (green)
ZW = ZWorker (blue)
VT = VM Thread (red)

1. ZWorker initiates a handshake in CPU lane 3
2. VM Thread starts executing the handshake
3. Notify ZWorker, handshake is completed

Thank You

Copyright © 2019 Oracle and/or its affiliates.

Copyright © 2019 Oracle and/or its affiliates.

Runtime

• Type-Stable-Memory

• Mutexes

Mutexes and TSM

Copyright © 2019 Oracle and/or its affiliates.

Runtime

• Linked list

• Mutex

• Array

• Hazard pointers

Java Threads

Copyright © 2019 Oracle and/or its affiliates.

Runtime

• Fixed size

• Mutex

• Spinlock

• TSM

• Concurrent

• EBR/RCU

• Constant-time reads

Hash tables

Copyright © 2019 Oracle and/or its affiliates.

Runtime

• Mutex backed

• Serialized
• Stopping

• Wake-up

• Futex

• Co-op semaphore

Fast safepoints

